Profiling the Physical Performance of Young Boxers with Unsupervised Machine Learning: A Cross-Sectional Study

被引:1
|
作者
Merlo, Rodrigo [1 ,2 ]
Rodriguez-Chavez, Angel [1 ]
Gomez-Castaneda, Pedro E. [2 ,3 ]
Rojas-Jaramillo, Andres [4 ,5 ]
Petro, Jorge L. [4 ,6 ]
Kreider, Richard B. [7 ]
Bonilla, Diego A. [4 ,6 ,8 ]
机构
[1] Dynam Business & Sci Soc DBSS Int SAS, Res Div, Leon 37530, Mexico
[2] Clg Profes Licenciados Entrenamiento Deport CPLED, Mexico City 03650, Mexico
[3] Escuela Nacl Entrenadores Deport, Comis Nacl Cultura Fis & Deporte, Mexico City 08400, Mexico
[4] Dynam Business & Sci Soc DBSS Int SAS, Res Div, Bogota 110311, Colombia
[5] Inst Dept Deportes Antioquia INDEPORTES, Grp Invest CINDA, Medellin 050034, Colombia
[6] Univ Cordoba, Res Grp Phys Act, Sports & Hlth Sci GICAFS, Monteria 230002, Colombia
[7] Texas A&M Univ, Exercise & Sport Nutr Lab, Human Clin Res Facil, College Stn, TX 77843 USA
[8] Univ Distrital Francisco Jose De Caldas, Res Grp Biochem & Mol Biol, Bogota 110311, Colombia
关键词
boxing; strength; physical assessment; profiling; machine learning; STRENGTH; PUNCHES; POWER;
D O I
10.3390/sports11070131
中图分类号
G8 [体育];
学科分类号
04 ; 0403 ;
摘要
Mexico City is the location with the largest number of boxers in Mexico; in fact, it is the first city in the country to open a Technological Baccalaureate in Education and Sports Promotion with a pugilism orientation. This cross-sectional study aimed to determine the physical-functional profile of applicants for admission to the baccalaureate in sports. A total of 227 young athletes (44F; 183M; 15.65 (1.79) years; 63.66 (14.98) kg; >3 years of boxing experience) participated in this study. Body mass (BM), maximal isometric handgrip (HG) strength, the height of the countermovement jump (CMJ), the velocity of straight boxing punches (PV), and the rear hand punch impact force (PIF) were measured. The young boxers were profiled using unsupervised machine learning algorithms, and the probability of superiority (& rho;) was calculated as the effect size of the differences. K-Medoids clustering resulted in two sex-independent significantly different groups: Profile 1 (n = 118) and Profile 2 (n = 109). Except for BM, Profile 2 was statistically higher (p < 0.001) with a clear distinction in terms of superiority on PIF (& rho; = 0.118), the PIF-to-BM ratio (& rho; = 0.017), the PIF-to-HG ratio (& rho; = 0.079) and the PIF-to-BM+HG ratio (& rho; = 0.008). In general, strength levels explained most of the data variation; therefore, it is reasonable to recommend the implementation of tests aimed at assessing the levels of isometric and applied strength in boxing gestures. The identification of these physical-functional profiles might help to differentiate training programs during sports specialization of young boxing athletes.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Physical Activity, Brain Function And Cognitive Performance In Young Adults - A Cross-sectional Study
    Krell, Janina
    Benzinger, Sabrina
    Boes, Klaus
    Engelmann, Jeremias
    Heger, Dominic
    Putze, Felix
    Schultz, Tanja
    Stahn, Alexander
    MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2012, 44 : 738 - 738
  • [2] Physical Fitness in Young Padel Players: A Cross-Sectional Study
    Courel-Ibanez, Javier
    Llorca-Miralles, Javier
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (05) : 1 - 10
  • [3] Profiling Physical Fitness of Physical Education Majors Using Unsupervised Machine Learning
    Bonilla, Diego A.
    Sanchez-Rojas, Isabel A.
    Mendoza-Romero, Dario
    Moreno, Yurany
    Koci, Jana
    Gomez-Miranda, Luis M.
    Rojas-Valverde, Daniel
    Petro, Jorge L.
    Kreider, Richard B.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2023, 20 (01)
  • [4] Correlates of Unsupervised Bathing of Infants: A Cross-Sectional Study
    van Beelen, Mirjam E. J.
    van Beeck, Eduard F.
    den Hertog, Paul
    Beirens, Tinneke M. J.
    Raat, Hein
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2013, 10 (03): : 856 - 866
  • [5] Profiling of Young Diabetes in India: A Cross-Sectional Analysis Report
    Narayanan, N. K.
    Dwarakanath, C. S.
    Venkataraman, S.
    Manikandan, R. M.
    Narendra, B. S.
    Das, Sambit
    Dash, Kalpana
    Paladugu, Sridevi
    Seshadri, Krishna
    DIABETES, 2020, 69
  • [6] Machine learning performance in a microbial molecular autopsy context: A cross-sectional postmortem human population study
    Zhang, Yu
    Pechal, Jennifer L.
    Schmidt, Carl J.
    Jordan, Heather R.
    Wang, Wesley W.
    Benbow, M. Eric
    Sze, Sing-Hoi
    Tarone, Aaron M.
    PLOS ONE, 2019, 14 (04):
  • [7] Profiling of smokers and snuffers among young Finnish men - cross-sectional epidemiological study
    Pakkila, Jari
    Anttonen, Vuokko
    Patinen, Pertti
    Nyman, Kai
    Valkeapaa, Kirsi
    Birkhed, Dowen
    Tjaderhane, Leo
    Tanner, Tarja
    ACTA ODONTOLOGICA SCANDINAVICA, 2017, 75 (08) : 577 - 583
  • [8] Physical Activity and Depression Among Young Adults in Islamabad: A Cross-sectional Study
    Ali, Rabia
    Laved, Nismat
    Shah, Sycd M.
    Naqvi, Robab
    Farrukh, Zainab
    Jadoon, Muhammad Salar K.
    Tahir, Tehreem
    Iqbal, Saima P.
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2019, 11 (09)
  • [9] Cognitive Performance in Short Sleep Young Adults with Different Physical Activity Levels: A Cross-Sectional fNIRS Study
    You, Yanwei
    Liu, Jianxiu
    Wang, Dizhi
    Fu, Yingyao
    Liu, Ruidong
    Ma, Xindong
    BRAIN SCIENCES, 2023, 13 (02)
  • [10] Machine Learning to Predict Apical Lesions: A Cross-Sectional and Model Development Study
    Herbst, Sascha Rudolf
    Pitchika, Vinay
    Krois, Joachim
    Krasowski, Aleksander
    Schwendicke, Falk
    JOURNAL OF CLINICAL MEDICINE, 2023, 12 (17)