Comprehensive evaluation of deep and graph learning on drug-drug interactions prediction

被引:41
作者
Lin, Xuan [1 ]
Dai, Lichang [1 ]
Zhou, Yafang [1 ]
Yu, Zu-Guo [2 ]
Zhang, Wen [3 ]
Shi, Jian-Yu [4 ]
Cao, Dong-Sheng [5 ]
Zeng, Li [6 ]
Chen, Haowen [7 ,10 ]
Song, Bosheng [8 ,10 ]
Yu, Philip S. [9 ]
Zeng, Xiangxiang [8 ]
机构
[1] Xiangtan Univ, Coll Comp Sci, Xiangtan, Peoples R China
[2] Xiangtan Univ, Key Lab Intelligent Comp & Informat Proc, Minist Educ, Xiangtan, Peoples R China
[3] Huazhong Agr Univ, Coll Informat, Wuhan, Peoples R China
[4] Northwestern Polytech Univ, Xian, Peoples R China
[5] Cent South Univ, Xiangya Sch Pharmaceut Sci, Changsha, Peoples R China
[6] Yuyao Biotech, AIDD Dept, Shanghai, Peoples R China
[7] Hunan Univ, Changsha, Peoples R China
[8] Hunan Univ, Coll Informat Sci & Engn, Changsha, Peoples R China
[9] Univ Illinois, Comp Sci, Chicago, IL USA
[10] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410013, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; graph learning; drug-drug interactions prediction; ENSEMBLE METHOD; TRANSFORMER; INFORMATION; ACCURATE;
D O I
10.1093/bib/bbad235
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Recent advances and achievements of artificial intelligence (AI) as well as deep and graph learning models have established their usefulness in biomedical applications, especially in drug-drug interactions (DDIs). DDIs refer to a change in the effect of one drug to the presence of another drug in the human body, which plays an essential role in drug discovery and clinical research. DDIs prediction through traditional clinical trials and experiments is an expensive and time-consuming process. To correctly apply the advanced AI and deep learning, the developer and user meet various challenges such as the availability and encoding of data resources, and the design of computational methods. This review summarizes chemical structure based, network based, natural language processing based and hybrid methods, providing an updated and accessible guide to the broad researchers and development community with different domain knowledge. We introduce widely used molecular representation and describe the theoretical frameworks of graph neural network models for representing molecular structures. We present the advantages and disadvantages of deep and graph learning methods by performing comparative experiments. We discuss the potential technical challenges and highlight future directions of deep and graph learning models for accelerating DDIs prediction.
引用
收藏
页数:20
相关论文
共 139 条
[1]   MolGPT: Molecular Generation Using a Transformer-Decoder Model [J].
Bagal, Viraj ;
Aggarwal, Rishal ;
Vinod, P. K. ;
Priyakumar, U. Deva .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (09) :2064-2076
[2]  
Baldessarini R.J., 2006, Drug therapy of depression and anxiety disorders in Goodman and Gilman's the Pharmacological Basis of Therapeutics eds, P429
[3]   A community computational challenge to predict the activity of pairs of compounds [J].
Bansal, Mukesh ;
Yang, Jichen ;
Karan, Charles ;
Menden, Michael P. ;
Costello, James C. ;
Tang, Hao ;
Xiao, Guanghua ;
Li, Yajuan ;
Allen, Jeffrey ;
Zhong, Rui ;
Chen, Beibei ;
Kim, Minsoo ;
Wang, Tao ;
Heiser, Laura M. ;
Realubit, Ronald ;
Mattioli, Michela ;
Alvarez, Mariano J. ;
Shen, Yao ;
Gallahan, Daniel ;
Singer, Dinah ;
Saez-Rodriguez, Julio ;
Xie, Yang ;
Stolovitzky, Gustavo ;
Califano, Andrea ;
Abbuehl, Jean-Paul ;
Altman, Russ B. ;
Balcome, Shawn ;
Bell, Ana ;
Bender, Andreas ;
Berger, Bonnie ;
Bernard, Jonathan ;
Bieberich, Andrew A. ;
Borboudakis, Giorgos ;
Chan, Christina ;
Chen, Ting-Huei ;
Choi, Jaejoon ;
Coelho, Luis Pedro ;
Creighton, Chad J. ;
Dampier, Will ;
Davisson, V. Jo ;
Deshpande, Raamesh ;
Diao, Lixia ;
Di Camillo, Barbara ;
Dundar, Murat ;
Ertel, Adam ;
Goswami, Chirayu P. ;
Gottlieb, Assaf ;
Gould, Michael N. ;
Goya, Jonathan ;
Grau, Michael .
NATURE BIOTECHNOLOGY, 2014, 32 (12) :1213-+
[4]   Minimal-uncertainty prediction of general drug-likeness based on Bayesian neural networks [J].
Beker, Wiktor ;
Wolos, Agnieszka ;
Szymkuc, Sara ;
Grzybowski, Bartosz A. .
NATURE MACHINE INTELLIGENCE, 2020, 2 (08) :457-+
[5]  
Bonner S., 2022, BRIEF BIOINFORM, V23, pbbac404
[6]   OpenBioLink: a benchmarking framework for large-scale biomedical link prediction [J].
Breit, Anna ;
Ott, Simon ;
Agibetov, Asan ;
Samwald, Matthias .
BIOINFORMATICS, 2020, 36 (13) :4097-4098
[7]  
Brown TB, 2020, ADV NEUR IN, V33
[8]   Pharmacointeraction Network Models Predict Unknown Drug-Drug Interactions [J].
Cami, Aurel ;
Manzi, Shannon ;
Arnold, Alana ;
Reis, Ben Y. .
PLOS ONE, 2013, 8 (04)
[9]  
Cao S., 2015, P 24 ACM INT C INF K, P891, DOI DOI 10.1145/2806416.2806512
[10]   MUFFIN: multi-scale feature fusion for drug-drug interaction prediction [J].
Chen, Yujie ;
Ma, Tengfei ;
Yang, Xixi ;
Wang, Jianmin ;
Song, Bosheng ;
Zeng, Xiangxiang .
BIOINFORMATICS, 2021, 37 (17) :2651-2658