Nanometer-Sized Te Pistons in Carbon Cylinders as Nano-Motor Prototypes: Implications for Nano-Electromechanical Device Fabrication

被引:4
作者
He, Long-Bing [1 ,2 ,3 ]
Shangguan, Lei [1 ,2 ]
Gao, Yu-Tian [1 ,2 ]
Yang, Sen [1 ,2 ]
Ran, Ya-Ting [1 ,3 ]
Lu, Zi-Yu [1 ,3 ]
Zhu, Jiong-Hao [1 ,3 ]
Wang, Bin-Jie [4 ]
Sun, Li-Tao [1 ,2 ]
机构
[1] Southeast Univ, SEU FEI Nanop Ctr, Key Lab MEMS, Minist Educ, Nanjing 210096, Peoples R China
[2] Joint Res Inst Southeast Univ & Monash Univ, Ctr Adv Mat & Mfg, Suzhou 215123, Peoples R China
[3] Southeast Univ, SEU AMTE Collaborat Ctr Atom Layer Deposit & Etchi, Wuxi 214000, Peoples R China
[4] Thermo Fisher Elect Technol Res & Dev Shanghai Co, Thermo Fisher Shanghai Nanoport, Shanghai 201203, Peoples R China
基金
中国国家自然科学基金;
关键词
nano-motor; reciprocating motion; piston-cylinder configuration; electromigration; thermal expansion; NANOTUBES; TRANSPORT; DRIVEN; FORCE;
D O I
10.1021/acsanm.3c00816
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Manipulation of nano-objects is fascinating as it not only facilitates the understanding of the essential properties of nanomaterials but also enlightens the design of future nano-devices beyond current micro-electromechanical systems. In this paper, a piston-cylinder-configured nano-motor prototype is designed and fabricated, in which nanometer-sized Te segments are electrically controlled to reciprocate inside the carbon cylinder serving as nano pistons. The nano-motor prototype has a length of similar to 550 nm, an outer diameter of similar to 150 nm, and a piston diameter of similar to 30 nm. Electron wind and thermal expansion are two reciprocal forces that create a dynamic equilibrium on the Te pistons and enable the circulating motions. With bias control, a circulating rate of 0-4.3 counts per second has been achieved. This prototype is the smallest piston cylinder-type nano-motor that has ever been reported and can provide new insights into investment casting-assisted nano electromechanical device fabrication.
引用
收藏
页码:7679 / 7685
页数:7
相关论文
共 41 条
[11]   Copper-filled carbon nanotubes: Rheostatlike Behavior and femtogram copper mass transport [J].
Golberg, Dmitri ;
Costa, Pedro M. F. J. ;
Mitome, Masanori ;
Hampel, Silke ;
Haase, Diana ;
Mueller, Christian ;
Leonhardt, Albrecht ;
Bando, Yoshio .
ADVANCED MATERIALS, 2007, 19 (15) :1937-+
[12]   Engineering of Self-Propelling Microbots and Microdevices Powered by Magnetic and Electric Fields [J].
Han, Koohee ;
Shields, C. Wyatt ;
Velev, Orlin D. .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (25)
[13]   Investment casting of carbon tubular structures [J].
He, Longbing ;
Xu, Tao ;
Sun, Jun ;
Yin, Kuibo ;
Xie, Xiao ;
Ding, Liang ;
Xiu, Helen ;
Sun, Litao .
CARBON, 2012, 50 (08) :2845-2852
[14]   Electromigration forces on ions in carbon nanotubes [J].
Heinze, S ;
Wang, NP ;
Tersoff, J .
PHYSICAL REVIEW LETTERS, 2005, 95 (18)
[15]   Thermal gradient induced actuation in double-walled carbon nanotubes [J].
Hou, Quan-Wen ;
Cao, Bing-Yang ;
Guo, Zeng-Yuan .
NANOTECHNOLOGY, 2009, 20 (49)
[16]   In situ fabrication and graphitization of amorphous carbon nanowires and their electrical properties [J].
Jin, CH ;
Wang, JY ;
Chen, Q ;
Peng, LM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (11) :5423-5428
[17]   Micromotors with Step-Motor Characteristics by Controlled Magnetic Interactions among Assembled Components [J].
Kim, Kwanoh ;
Guo, Jianhe ;
Xu, Xiaobin ;
Fan, Donglei .
ACS NANO, 2015, 9 (01) :548-554
[18]   Innovative Mechanisms for Precision Assembly and Actuation of Arrays of Nanowire Oscillators [J].
Kim, Kwanoh ;
Zhu, Frank Q. ;
Fan, Donglei .
ACS NANO, 2013, 7 (04) :3476-3483
[19]   Mesoscopic thermal transport and energy dissipation in carbon nanotubes [J].
Kim, P ;
Shi, L ;
Majumdar, A ;
McEuen, PL .
PHYSICA B-CONDENSED MATTER, 2002, 323 (1-4) :67-70
[20]   Highly Efficient Freestyle Magnetic Nanoswimmer [J].
Li, Tianlong ;
Li, Jinxing ;
Morozov, Konstantin I. ;
Wu, Zhiguang ;
Xu, Tailin ;
Rozen, Isaac ;
Leshansky, Alexander M. ;
Li, Longqiu ;
Wang, Joseph .
NANO LETTERS, 2017, 17 (08) :5092-5098