Automatic Sequences in Negative Bases and Proofs of Some Conjectures of Shevelev

被引:1
作者
Shallit, Jeffrey [1 ]
Shan, Sonja Linghui [1 ]
Yang, Kai Hsiang [1 ]
机构
[1] Univ Waterloo, Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
来源
RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS | 2023年 / 57卷
基金
加拿大自然科学与工程研究理事会;
关键词
Automatic sequence; representation in negative base; Fibonacci representation; combinatorics on words; logic; decision procedure; Thue-Morse sequence;
D O I
10.1051/ita/2022011
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We discuss the use of negative bases in automatic sequences. Recently the theorem-prover Walnut has been extended to allow the use of base (-k) to express variables, thus permitting quantification over DOUBLE-STRUCK CAPITAL Z instead of N. This enables us to prove results about two-sided (bi-infinite) automatic sequences. We first explain the theory behind negative bases in Walnut. Next, we use this new version of Walnut to give a very simple proof of a strengthened version of a theorem of Shevelev. We use our ideas to resolve two open problems of Shevelev from 2017. We also reprove a 2000 result of Shut involving bi-infinite binary words.
引用
收藏
页数:22
相关论文
共 27 条
[1]  
Allouche J.P., 1999, Sequences and their applications, P1, DOI DOI 10.1007/978-1-4471-0551-0_1
[2]  
Allouche J.-P., 2003, AUTOMATIC SEQUENCES, DOI DOI 10.1017/CBO9780511546563
[3]  
Alpert H., 2009, Integers: Electron. J. Comb. Number Theory, V9, P745
[4]  
Berstel J., 1979, PROC 6 INT C AUTOMAT, V71, P16
[5]  
Berstel J, 1980, SEM INF THEOR, P57
[6]  
Berstel J., 1995, NUMBER 20 PUBLICATIO
[7]  
BUNDER MW, 1992, FIBONACCI QUART, V30, P111
[8]   ON THE EXISTENCE OF SOLUTIONS FOR THE FRENKEL-KONTOROVA MODELS ON QUASI-CRYSTALS [J].
Du, Jianxing ;
Su, Xifeng .
ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (06) :4177-4198
[9]  
Grunwald V., 1885, GIORNALE MATEMATICHE, P203
[10]  
Hajnal P., 2023, B ICA, P54