Integrated membrane material design and system synthesis

被引:2
作者
Taifan, Garry S. P. [1 ,2 ]
Maravelias, Christos T. [1 ,2 ,3 ]
机构
[1] Princeton Univ, Dept Chem & Biol Engn, 50-70 Olden St, Princeton, NJ 08540 USA
[2] DOE Great Lakes Bioenergy Res Ctr, Madison, WI USA
[3] Princeton Univ, Andlinger Ctr Energy & Environm, 86 Olden St, Princeton, NJ 08540 USA
关键词
Global optimization; Membrane systems; Multicomponent gas separation; Process synthesis; GAS-SEPARATION; POLYMERIC MEMBRANE; OPTIMIZATION; PERMEATION; CAPTURE; MODEL;
D O I
10.1016/j.ces.2022.118406
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In designing membrane systems, the synergy between membrane materials and the process design is often overlooked. We present a mixed-integer nonlinear programming (MINLP) model for synthesizing membrane systems while simultaneously designing the respective membrane materials for multicompo-nent gas separation. The approach considers superstructure representations for systems with: (1) same, (2) potentially different, and (3) property-targeting membrane materials. In the first two systems, the selection of membrane material is a decision, while in the final type, membrane permeances are subject to optimization. Physics-based surrogate models are used to describe permeation in crossflow and coun-tercurrent flow permeators. We show that, through a case study of biogas upgrading, our approach obtains high quality solutions. Furthermore, we use the proposed approach while considering permeance-based production cost to find the optimal membrane.CO 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:14
相关论文
共 47 条
  • [1] Gas-separation membrane cascades utilizing limited numbers of compressors
    Agrawal, R
    Xu, JG
    [J]. AICHE JOURNAL, 1996, 42 (08) : 2141 - 2154
  • [2] Thermally Rearranged Polybenzoxazoles Containing Bulky Adamantyl Groups from Ortho-Substituted Precursor Copolyimides
    Aguilar-Lugo, Carla
    Alvarez, Cristina
    Lee, Young Moo
    de la Campa, Jose G.
    Lozano, Angel E.
    [J]. MACROMOLECULES, 2018, 51 (05) : 1605 - 1619
  • [3] Babcock R E., 1988, Energy progress
  • [4] Membrane-based technologies for biogas upgrading: a review
    Baena-Moreno, Francisco M.
    le Sache, Estelle
    Pastor-Perez, Laura
    Reina, T. R.
    [J]. ENVIRONMENTAL CHEMISTRY LETTERS, 2020, 18 (05) : 1649 - 1658
  • [5] Gas Separation Membrane Materials: A Perspective
    Baker, Richard W.
    Low, Bee Ting
    [J]. MACROMOLECULES, 2014, 47 (20) : 6999 - 7013
  • [6] Beers K.S., 2012, US Patent, Patent No. [8,245,978, 8245978]
  • [7] Bestuzheva K, 2021, Arxiv, DOI [arXiv:2112.08872, DOI 10.48550/ARXIV.2112.08872]
  • [8] Optimal process design of biogas upgrading membrane systems: Polymeric vs high performance inorganic membrane materials
    Bozorg, M.
    Ramirez-Santos, Alvaro A.
    Addis, B.
    Piccialli, V.
    Castel, C.
    Favre, E.
    [J]. CHEMICAL ENGINEERING SCIENCE, 2020, 225
  • [9] Polymeric membrane materials for nitrogen production from air: A process synthesis study
    Bozorg, M.
    Addis, B.
    Picciall, V
    Ramirez-Santos, Alvaro A.
    Castel, C.
    Pinnau, I
    Favre, E.
    [J]. CHEMICAL ENGINEERING SCIENCE, 2019, 207 : 1196 - 1213
  • [10] Multi-step membrane process for biogas upgrading
    Brunetti, Adele
    Barbieri, Giuseppe
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2022, 652