Multimodal and Multitemporal Land Use/Land Cover Semantic Segmentation on Sentinel-1 and Sentinel-2 Imagery: An Application on a MultiSenGE Dataset

被引:6
作者
Wenger, Romain [1 ]
Puissant, Anne [1 ]
Weber, Jonathan [2 ]
Idoumghar, Lhassane [2 ]
Forestier, Germain [2 ]
机构
[1] Univ Strasbourg, LIVE UMR 7362 CNRS, F-67000 Strasbourg, France
[2] Univ Haute Alsace, IRIMAS UR 7499, F-68100 Mulhouse, France
关键词
multitemporal; multimodal; Sentinel-1; Sentinel-2; land use; land cover; deep learning; time series; TIME-SERIES; CLASSIFICATION; FUSION; REGION;
D O I
10.3390/rs15010151
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In the context of global change, up-to-date land use land cover (LULC) maps is a major challenge to assess pressures on natural areas. These maps also allow us to assess the evolution of land cover and to quantify changes over time (such as urban sprawl), which is essential for having a precise understanding of a given territory. Few studies have combined information from Sentinel-1 and Sentinel-2 imagery, but merging radar and optical imagery has been shown to have several benefits for a range of study cases, such as semantic segmentation or classification. For this study, we used a newly produced dataset, MultiSenGE, which provides a set of multitemporal and multimodal patches over the Grand-Est region in France. To merge these data, we propose a CNN approach based on spatio-temporal and spatio-spectral feature fusion, ConvLSTM+Inception-S1S2. We used a U-Net base model and ConvLSTM extractor for spatio-temporal features and an inception module for the spatio-spectral features extractor. The results show that describing an overrepresented class is preferable to map urban fabrics (UF). Furthermore, the addition of an Inception module on a date allowing the extraction of spatio-spectral features improves the classification results. Spatio-spectro-temporal method (ConvLSTM+Inception-S1S2) achieves higher global weighted F1Score than all other methods tested.
引用
收藏
页数:23
相关论文
共 53 条
  • [1] Improving Road Semantic Segmentation Using Generative Adversarial Network
    Abdollahi, Abolfazl
    Pradhan, Biswajeet
    Sharma, Gaurav
    Maulud, Khairul Nizam Abdul
    Alamri, Abdullah
    [J]. IEEE ACCESS, 2021, 9 : 64381 - 64392
  • [2] Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks
    Audebert, Nicolas
    Le Saux, Bertrand
    Lefevre, Sebastien
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 140 : 20 - 32
  • [3] SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
    Badrinarayanan, Vijay
    Kendall, Alex
    Cipolla, Roberto
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) : 2481 - 2495
  • [4] Calibrated Focal Loss for Semantic Labeling of High-Resolution Remote Sensing Images
    Bai, Haiwei
    Cheng, Jian
    Su, Yanzhou
    Liu, Siyu
    Liu, Xin
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 6531 - 6547
  • [5] Analysis of various optimizers on deep convolutional neural network model in the application of hyperspectral remote sensing image classification
    Bera, Somenath
    Shrivastava, Vimal K.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (07) : 2664 - 2683
  • [6] Dynamic World, Near real-time global 10 m land use land cover mapping
    Brown, Christopher F.
    Brumby, Steven P.
    Guzder-Williams, Brookie
    Birch, Tanya
    Hyde, Samantha Brooks
    Mazzariello, Joseph
    Czerwinski, Wanda
    Pasquarella, Valerie J.
    Haertel, Robert
    Ilyushchenko, Simon
    Schwehr, Kurt
    Weisse, Mikaela
    Stolle, Fred
    Hanson, Craig
    Guinan, Oliver
    Moore, Rebecca
    Tait, Alexander M.
    [J]. SCIENTIFIC DATA, 2022, 9 (01)
  • [7] Spatial-Temporal Neural Network for Rice Field Classification from SAR Images
    Chang, Yang-Lang
    Tan, Tan-Hsu
    Chen, Tsung-Hau
    Chuah, Joon Huang
    Chang, Lena
    Wu, Meng-Che
    Tatini, Narendra Babu
    Ma, Shang-Chih
    Alkhaleefah, Mohammad
    [J]. REMOTE SENSING, 2022, 14 (08)
  • [8] Fusion of Sentinel-1A and Sentinel-2A data for land cover mapping: a case study in the lower Magdalena region, Colombia
    Clerici, Nicola
    Valbuena Calderon, Cesar Augusto
    Manuel Posada, Juan
    [J]. JOURNAL OF MAPS, 2017, 13 (02): : 718 - 726
  • [9] Convolutional Neural Network for Remote-Sensing Scene Classification: Transfer Learning Analysis
    de Lima, Rafael Pires
    Marfurt, Kurt
    [J]. REMOTE SENSING, 2020, 12 (01)
  • [10] Towards a Multi-Temporal Deep Learning Approach for Mapping Urban Fabric Using Sentinel 2 Images
    El Mendili, Lamiae
    Puissant, Anne
    Chougrad, Mehdi
    Sebari, Imane
    [J]. REMOTE SENSING, 2020, 12 (03)