Brazilian Canephora coffee evaluation using NIR spectroscopy and discriminant chemometric techniques

被引:21
作者
Baqueta, Michel Rocha [1 ]
Alves, Enrique Anastacio [2 ]
Valderrama, Patricia [3 ]
Pallone, Juliana Azevedo Lima [1 ]
机构
[1] Univ Campinas UNICAMP, Sch Food Engn, Dept Food Sci & Nutr, Campinas, Sao Paulo, Brazil
[2] Empresa Brasileira Pesquisa Agr EMBRAPA Rondonia, Porto Velho, Rondonia, Brazil
[3] Univ Tecnol Fed Parana UTFPR, Campo Mourao, Parana, Brazil
基金
巴西圣保罗研究基金会; 瑞典研究理事会;
关键词
Amazonian robusta; Conilon; Geographical origin; Multivariate classification; NIR spectroscopy; PLS-DA;
D O I
10.1016/j.jfca.2022.105065
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
High-quality Brazilian Canephora coffees are rising to the level of specialty coffees in the face of a new industry perception. In this framework, spectra from 527 coffees were analyzed in the near-infrared (NIR) region. Prin-cipal component analysis distinguished Brazilian Canephora producing states, botanical varieties, low and high -quality Canephora, Canephora and Arabica, and Canephora with geographical indication (GI) from those without GI. Also, Canephora coffee cultivars from Western Brazilian Amazon were distinguished. Three multi-class PLS-DA (traditional, hard, and soft versions) were compared to discriminate 5 classes: Robusta Amazonico from traditional (1) and indigenous (2) producers of Rondonia, Conilon from Espirito Santo (3), Conilon from Bahia (4), and specialty Arabica (5). Binary PLS-DA discriminated GI Canephora and non-GI Canephora with 100% sensitivity and specificity. Carbohydrates, chlorogenic acids, lipids, caffeine, and proteins were dominant ab-sorption bands in coffee classifications. The proposed method is objective, simple, fast, and could be used in the routine analysis of coffee to verify claims of identity, variety, and origin.
引用
收藏
页数:10
相关论文
共 39 条
  • [31] Spectralprint techniques for wine and vinegar characterization, authentication and quality control: Advances and projections
    Rios-Reina, Rocio
    Camina, Jose M.
    Callejon, Raquel M.
    Azcarate, Silvana M.
    [J]. TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2021, 134
  • [32] Direct solid sample analysis using synchronous fluorescence spectroscopy coupled with chemometric tools for the geographical discrimination of coffee samples
    Robert, Jarbas Verissimo
    de Gois, Jefferson S.
    Rocha, Rodrigo Barros
    Luna, Aderval S.
    [J]. FOOD CHEMISTRY, 2022, 371
  • [33] Chemometric tools for food fraud detection: The role of target class in non-targeted analysis
    Rodionova, O. Ye
    Pomerantsev, A. L.
    [J]. FOOD CHEMISTRY, 2020, 317
  • [34] SMOOTHING + DIFFERENTIATION OF DATA BY SIMPLIFIED LEAST SQUARES PROCEDURES
    SAVITZKY, A
    GOLAY, MJE
    [J]. ANALYTICAL CHEMISTRY, 1964, 36 (08) : 1627 - &
  • [35] Souza C. A. de, 2018, Coffee Science, V13, P210, DOI 10.25186/cs.v13i2.1419
  • [36] Souza C.A. de, 2021, CAFE CONILON CONILON, P187
  • [37] Souza CA, 2020, Revista IfesCiencia, V6, P159, DOI [10.36524/ric.v6i3.875, DOI 10.36524/RIC.V6I3.875]
  • [38] Amazonian Robustas - new Coffea canephora coffee cultivars for the Western Brazilian Amazon
    Teixeira, Alexsandro Lara
    Rocha, Rodrigo Barros
    Espindula, Marcelo Curitiba
    Ramalho, Andre Rostand
    Vieira Junior, Jose Roberto
    Alves, Enrique Anastacio
    Pereira Lunz, Aureny Maria
    Souza, Flavio de Franca
    Medeiros Costa, Jose Nilton
    Fernandes, Cleberson de Freitas
    [J]. CROP BREEDING AND APPLIED BIOTECHNOLOGY, 2020, 20 (03): : 1 - 5
  • [39] PLS-DA - A MATLAB GUI tool for hard and soft approaches to partial least squares discriminant analysis
    Zontov, Y., V
    Rodionova, O. Ye
    Kucheryavskiy, S., V
    Pomerantsev, A. L.
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2020, 203 (203)