Recent Advances and Future Perspectives of Metal-Based Electrocatalysts for Overall Electrochemical Water Splitting

被引:48
|
作者
Hayat, Asif [1 ,2 ]
Sohail, Muhammad [3 ]
Ali, Hamid [4 ]
Taha, T. A. [5 ,6 ]
Qazi, H. I. A. [7 ]
Ur Rahman, Naveed [8 ]
Ajmal, Zeeshan [9 ]
Kalam, Abul [10 ,11 ]
Al-Sehemi, Abdullah G. [10 ,11 ]
Wageh, S. [12 ,13 ]
Amin, Mohammed A. [14 ]
Palamanit, Arkom [15 ]
Nawawi, W. I. [16 ]
Newair, Emad F. [17 ]
Orooji, Yasin [2 ]
机构
[1] Zhejiang Normal Univ, Coll Chem & Life Sci, Jinhua 321004, Zhejiang, Peoples R China
[2] Zhejiang Normal Univ, Coll Geog & Environm Sci, Jinhua 321004, Peoples R China
[3] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Huzhou, Huzhou 313001, Peoples R China
[4] Fuzhou Univ, Coll Mat Sci & Engn, Key Lab Ecomat Adv Technol, Multiscale Computat Mat Facil, Fuzhou 350100, Peoples R China
[5] Jouf Univ, Coll Sci, Phys Dept, POB 2014, Sakaka, Saudi Arabia
[6] Menoufia Univ, Fac Elect Engn, Phys & Engn Math Dept, Menoufia 32952, Egypt
[7] Chongqing Univ Posts & Telecommun, Coll Optoelect Engn, Chongqing 400065, Peoples R China
[8] Bacha Khan Univ Charsadda, Dept Phys, Charsadda, KP, Pakistan
[9] Northwestern Polytech Univ, Sch Chem & Chem Engn, Xian 710072, Peoples R China
[10] King Khalid Univ, Res Ctr Adv Mat Sci RCAMS, POB 9004, Abha 61413, Saudi Arabia
[11] King Khalid Univ, Coll Sci, Dept Chem, POB 9004, Abha 61413, Saudi Arabia
[12] King Abdulaziz Univ, Fac Sci, Dept Phys, Jeddah 21589, Saudi Arabia
[13] Menoufia Univ, Fac Elect Engn, Phys & Engn Math Dept, Menoufia 32952, Egypt
[14] Taif Univ, Coll Sci, Dept Chem, POB 11099, Taif 21944, Saudi Arabia
[15] Prince Songkla Univ, Fac Engn, Dept Specialized Engn, Energy Technol Program, 15 Karnjanavanich Rd, Hat Yai 90110, Thailand
[16] Univ Teknol MARA, Fac Appl Sci, Cawangan Perlis 02600, Arau Perlis, Malaysia
[17] Sohag Univ, Fac Sci, Chem Dept, Sohag 82524, Egypt
关键词
Electrolysis; Evaluation Parameters; Metal-based Electrocatalysts; Overall Water Splitting; Solar Cell; etc; EFFICIENT BIFUNCTIONAL ELECTROCATALYSTS; HYDROGEN EVOLUTION REACTION; PEROVSKITE SOLAR-CELL; IN-SITU FORMATION; HIGHLY-EFFICIENT; OXYGEN EVOLUTION; HIGH-PERFORMANCE; NANOSHEET ARRAYS; EARTH-ABUNDANT; ALKALINE ELECTROLYSIS;
D O I
10.1002/tcr.202200149
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recently, the growing demand for a renewable and sustainable fuel alternative is contingent on fuel cell technologies. Even though it is regarded as an environmentally sustainable method of generating fuel for immediate concerns, it must be enhanced to make it extraordinarily affordable, and environmentally sustainable. Hydrogen (H-2) synthesis by electrochemical water splitting (ECWS) is considered one of the foremost potential prospective methods for renewable energy output and H-2 society implementation. Existing massive H-2 output is mostly reliant on the steaming reformation of carbon fuels that yield CO2 together with H-2 and is a finite resource. ECWS is a viable, efficient, and contamination-free method for H-2 evolution. Consequently, developing reliable and cost-effective technology for ECWS was a top priority for scientists around the globe. Utilizing renewable technologies to decrease total fuel utilization is crucial for H-2 evolution. Capturing and transforming the fuel from the ambient through various renewable solutions for water splitting (WS) could effectively reduce the need for additional electricity. ECWS is among the foremost potential prospective methods for renewable energy output and the achievement of a H-2-based economy. For the overall water splitting (OWS), several transition-metal-based polyfunctional metal catalysts for both cathode and anode have been synthesized. Furthermore, the essential to the widespread adoption of such technology is the development of reduced-price, super functional electrocatalysts to substitute those, depending on metals. Many metal-premised electrocatalysts for both the anode and cathode have been designed for the WS process. The attributes of H-2 and oxygen (O-2) dynamics interactions on the electrodes of water electrolysis cells and the fundamental techniques for evaluating the achievement of electrocatalysts are outlined in this paper. Special emphasis is paid to their fabrication, electrocatalytic performance, durability, and measures for enhancing their efficiency. In addition, prospective ideas on metal-based WS electrocatalysts based on existing problems are presented. It is anticipated that this review will offer a straight direction toward the engineering and construction of novel polyfunctional electrocatalysts encompassing superior efficiency in a suitable WS technique.
引用
收藏
页数:64
相关论文
共 50 条
  • [41] Surface and interface engineering of noble-metal-free electrocatalysts for efficient overall water splitting
    Xu, Hui
    Shang, Hongyuan
    Wang, Cheng
    Du, Yukou
    COORDINATION CHEMISTRY REVIEWS, 2020, 418
  • [42] Recent Advances in Non-precious Metal-based Electrodes for Alkaline Water Electrolysis
    Zhou, Daojin
    Li, Pengsong
    Xu, Wenwen
    Jawaid, Sana
    Mohammed-Ibrahim, Jamesh
    Liu, Wen
    Kuang, Yun
    Sun, Xiaoming
    CHEMNANOMAT, 2020, 6 (03): : 336 - 355
  • [43] Recent advances in metal-nitrogen-carbon catalysts for electrochemical water splitting
    Liu, Kaihua
    Zhong, Haixia
    Meng, Fanlu
    Zhang, Xinbo
    Yan, Junmin
    Jiang, Qing
    MATERIALS CHEMISTRY FRONTIERS, 2017, 1 (11) : 2155 - 2173
  • [44] Nanoarchitectonics for Transition-Metal-Sulfide-Based Electrocatalysts for Water Splitting
    Guo, Yanna
    Park, Teahoon
    Yi, Jin Woo
    Henzie, Joel
    Kim, Jeonghun
    Wang, Zhongli
    Jiang, Bo
    Bando, Yoshio
    Sugahara, Yoshiyuki
    Tang, Jing
    Yamauchi, Yusuke
    ADVANCED MATERIALS, 2019, 31 (17)
  • [45] Amorphous NiFe Nanotube Arrays Bifunctional Electrocatalysts for Efficient Electrochemical Overall Water Splitting
    Xu, Lu
    Zhang, Fu-Tao
    Chen, Jia-Hui
    Fu, Xian-Zhu
    Sun, Rong
    Wong, Ching-Ping
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (03): : 1210 - 1217
  • [46] Metal-support interactions in designing noble metal-based catalysts for electrochemical CO2 reduction: Recent advances and future perspectives
    Li, Zhao
    Wu, Rui
    Zhao, Lei
    Li, Pingbo
    Wei, Xinxin
    Wang, Junjie
    Chen, Jun Song
    Zhang, Tierui
    NANO RESEARCH, 2021, 14 (11) : 3795 - 3809
  • [47] Recent Advances in Transition Metal Phosphide Electrocatalysts for Water Splitting under Neutral pH Conditions
    Kim, Byeongyoon
    Kim, Taekyung
    Lee, Kwangyeol
    Li, Jinghong
    CHEMELECTROCHEM, 2020, 7 (17): : 3578 - 3589
  • [48] Recent Advances on Black Phosphorus Based Electrocatalysts for Water-Splitting
    Shi, Fangbing
    Huang, Keke
    Feng, Shouhua
    CHEMCATCHEM, 2020, 12 (07) : 1913 - 1921
  • [49] Recent advances in interface engineering of Fe/Co/Ni-based heterostructure electrocatalysts for water splitting
    Hao, Ju
    Wu, Kaili
    Lyu, Chaojie
    Yang, Yuquan
    Wu, Hongjing
    Liu, Jiajia
    Liu, Naiyan
    Lau, Woon-Ming
    Zheng, Jinlong
    MATERIALS HORIZONS, 2023, 10 (07) : 2312 - 2342
  • [50] Recent advances in water-splitting electrocatalysts based on manganese oxide
    Kumbhar, Vijay S.
    Lee, Hyeonkwon
    Lee, Jaeyoung
    Lee, Kiyoung
    CARBON RESOURCES CONVERSION, 2019, 2 (03) : 242 - 255