Uniqueness of hypersurfaces in weighted product spaces via maximum principles for the drift Laplacian

被引:0
作者
da Silva, Danilo F. [1 ]
Lima, Eraldo A., Jr. [1 ]
de Lima, Henrique F. [2 ]
机构
[1] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
[2] Univ Fed Campina Grande, Dept Matemat, BR-58429970 Campina Grande, Paraiba, Brazil
来源
BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA | 2023年 / 16卷 / 03期
关键词
Weighted product spaces; Drift Laplacian; Bakry-emery-Ricci tensor; Shrinking Ricci solitons; Complete two-sided hypersurfaces; f-mean curvature; Bernstein type results; RIGIDITY THEOREMS; MEAN-CURVATURE; SELF-SHRINKERS; RICCI; STABILITY; GRAPHS; GAP;
D O I
10.1007/s40574-022-00337-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We apply suitable maximum principles for the drift Laplacian to obtain several uniqueness results concerning complete two-sided hypersurfaces immersed with constant f-mean curvature in a weighted product space of form R x M-f(n) and such that its potential function f does not depend on the parameter t is an element of R. Among these results, we prove that the slices are the only complete two-sided f-minimal hypersurfaces lying in a half-space of R x M-f(n) and such that the Bakry-Emeri-Ricci tensor is bounded from below. Furthermore, we study the f-mean curvature equation related to entire graphs defined on the base M-n.
引用
收藏
页码:507 / 520
页数:14
相关论文
共 32 条