Machine learning directed multi-objective optimization of mixed variable chemical systems

被引:50
作者
Kershaw, Oliver J. [1 ]
Clayton, Adam D. [1 ]
Manson, Jamie A. [1 ]
Barthelme, Alexandre [2 ]
Pavey, John [2 ]
Peach, Philip [3 ]
Mustakis, Jason [4 ]
Howard, Roger M. [4 ]
Chamberlain, Thomas W. [1 ]
Warren, Nicholas J. [1 ]
Bourne, Richard A. [1 ]
机构
[1] Univ Leeds, Inst Proc Res & Dev, Sch Chem, Sch Chem & Proc Engn, Leeds LS2, England
[2] UCB Pharm SA, All Rech 60, B-1070 Anderlecht, Belgium
[3] Pfizer Ltd, Dept Chem Res & Dev, Ramsgate Rd, Sandwich CT13, England
[4] Pfizer Worldwide Res & Dev, Groton, CT USA
基金
英国工程与自然科学研究理事会;
关键词
Mixed variable optimization; Multi-objective; Machine learning; Reaction engineering; Automated flow reactor; SELF-OPTIMIZATION; CONTINUOUS-FLOW; PLATFORM; SELECTION;
D O I
10.1016/j.cej.2022.138443
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The consideration of discrete variables (e.g. catalyst, ligand, solvent) in experimental self-optimization ap-proaches remains a significant challenge. Herein we report the application of a new mixed variable multi-objective optimization (MVMOO) algorithm for the self-optimization of chemical reactions. Coupling of the MVMOO algorithm with an automated continuous flow platform enabled identification of the trade-off curves for different performance criteria by optimizing the continuous and discrete variables concurrently. This approach utilizes a Bayesian methodology to provide high optimization efficiency, enhances process understanding by considering key interactions between the mixed variables, and requires no prior knowledge of the reaction. Nucleophilic aromatic substitution (SNAr) and palladium catalyzed Sonogashira reactions were investigated, where the effect of solvent and ligand selection on the regioselectivity and process efficiency were determined respectively whilst simultaneously determining the optimum continuous parameters in each case.
引用
收藏
页数:9
相关论文
共 50 条
[31]   An Integrated Microreactor System for Self-Optimization of a Heck Reaction: From Micro- to Mesoscale Flow Systems [J].
McMullen, Jonathan P. ;
Stone, Matthew T. ;
Buchwald, Stephen L. ;
Jensen, Klavs F. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (39) :7076-7080
[32]   Automated Multitrajectory Method for Reaction Optimization in a Microfluidic System using Online IR Analysis [J].
Moore, Jason S. ;
Jensen, Klavs F. .
ORGANIC PROCESS RESEARCH & DEVELOPMENT, 2012, 16 (08) :1409-1415
[33]   OPTIMIZATION USING THE SUPER-MODIFIED SIMPLEX-METHOD [J].
MORGAN, E ;
BURTON, KW ;
NICKLESS, G .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1990, 8 (02) :97-107
[34]   Automated multi-objective reaction optimisation: which algorithm should I use? [J].
Mueller, Pia ;
Clayton, Adam D. ;
Manson, Jamie ;
Riley, Samuel ;
May, Oliver S. ;
Govan, Norman ;
Notman, Stuart ;
Ley, Steven, V ;
Chamberlain, Thomas W. ;
Bourne, Richard A. .
REACTION CHEMISTRY & ENGINEERING, 2022, 7 (04) :987-993
[35]   A platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flow [J].
Perera, Damith ;
Tucker, Joseph W. ;
Brahmbhatt, Shalini ;
Helal, Christopher J. ;
Chong, Ashley ;
Farrell, William ;
Richardson, Paul ;
Sach, Neal W. .
SCIENCE, 2018, 359 (6374) :429-434
[36]   Machine assisted reaction optimization: A self-optimizing reactor system for continuous-flow photochemical reactions [J].
Poscharny, K. ;
Fabry, D. C. ;
Heddrich, S. ;
Sugiono, E. ;
Liauw, M. A. ;
Rueping, M. .
TETRAHEDRON, 2018, 74 (25) :3171-3175
[37]  
Rasmussen CE, 2005, ADAPT COMPUT MACH LE, P1
[38]   Suzuki-Miyaura cross-coupling optimization enabled by automated feedback [J].
Reizman, Brandon J. ;
Wang, Yi-Ming ;
Buchwald, Stephen L. ;
Jensen, Klavs F. .
REACTION CHEMISTRY & ENGINEERING, 2016, 1 (06) :658-666
[39]   Simultaneous solvent screening and reaction optimization in microliter slugs [J].
Reizman, Brandon J. ;
Jensen, Klavs F. .
CHEMICAL COMMUNICATIONS, 2015, 51 (68) :13290-13293
[40]   Autonomous Multi-Step and Multi-Objective Optimization Facilitated by Real-Time Process Analytics [J].
Sagmeister, Peter ;
Ort, Florian F. ;
Jusner, Clemens E. ;
Hebrault, Dominique ;
Tampone, Thomas ;
Buono, Frederic G. ;
Williams, Jason D. ;
Kappe, C. Oliver .
ADVANCED SCIENCE, 2022, 9 (10)