Machine learning directed multi-objective optimization of mixed variable chemical systems

被引:50
作者
Kershaw, Oliver J. [1 ]
Clayton, Adam D. [1 ]
Manson, Jamie A. [1 ]
Barthelme, Alexandre [2 ]
Pavey, John [2 ]
Peach, Philip [3 ]
Mustakis, Jason [4 ]
Howard, Roger M. [4 ]
Chamberlain, Thomas W. [1 ]
Warren, Nicholas J. [1 ]
Bourne, Richard A. [1 ]
机构
[1] Univ Leeds, Inst Proc Res & Dev, Sch Chem, Sch Chem & Proc Engn, Leeds LS2, England
[2] UCB Pharm SA, All Rech 60, B-1070 Anderlecht, Belgium
[3] Pfizer Ltd, Dept Chem Res & Dev, Ramsgate Rd, Sandwich CT13, England
[4] Pfizer Worldwide Res & Dev, Groton, CT USA
基金
英国工程与自然科学研究理事会;
关键词
Mixed variable optimization; Multi-objective; Machine learning; Reaction engineering; Automated flow reactor; SELF-OPTIMIZATION; CONTINUOUS-FLOW; PLATFORM; SELECTION;
D O I
10.1016/j.cej.2022.138443
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The consideration of discrete variables (e.g. catalyst, ligand, solvent) in experimental self-optimization ap-proaches remains a significant challenge. Herein we report the application of a new mixed variable multi-objective optimization (MVMOO) algorithm for the self-optimization of chemical reactions. Coupling of the MVMOO algorithm with an automated continuous flow platform enabled identification of the trade-off curves for different performance criteria by optimizing the continuous and discrete variables concurrently. This approach utilizes a Bayesian methodology to provide high optimization efficiency, enhances process understanding by considering key interactions between the mixed variables, and requires no prior knowledge of the reaction. Nucleophilic aromatic substitution (SNAr) and palladium catalyzed Sonogashira reactions were investigated, where the effect of solvent and ligand selection on the regioselectivity and process efficiency were determined respectively whilst simultaneously determining the optimum continuous parameters in each case.
引用
收藏
页数:9
相关论文
共 50 条
[1]   Machine learning and molecular descriptors enable rational solvent selection in asymmetric catalysis [J].
Amar, Yehia ;
Schweidtmann, ArturM. ;
Deutsch, Paul ;
Cao, Liwei ;
Lapkin, Alexei .
CHEMICAL SCIENCE, 2019, 10 (27) :6697-6706
[2]   The effect of steric bulk in Sonogashira coupling reactions [J].
an der Heiden, Markus ;
Plenio, Herbert .
CHEMICAL COMMUNICATIONS, 2007, (09) :972-974
[3]   Optimum catalyst selection over continuous and discrete process variables with a single droplet microfluidic reaction platform [J].
Baumgartner, Lorenz M. ;
Coley, Connor W. ;
Reizman, Brandon J. ;
Gao, Kevin W. ;
Jensen, Klavs F. .
REACTION CHEMISTRY & ENGINEERING, 2018, 3 (03) :301-311
[4]   TRPV1: A Potential Drug Target for Treating Various Diseases [J].
Brito, Rafael ;
Sheth, Sandeep ;
Mukherjea, Debashree ;
Rybak, Leonard P. ;
Ramkumar, Vickram .
CELLS, 2014, 3 (02) :517-545
[5]   Droplet microfluidic technology for single-cell high-throughput screening [J].
Brouzes, Eric ;
Medkova, Martina ;
Savenelli, Neal ;
Marran, Dave ;
Twardowski, Mariusz ;
Hutchison, J. Brian ;
Rothberg, Jonathan M. ;
Link, Darren R. ;
Perrimon, Norbert ;
Samuels, Michael L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (34) :14195-14200
[6]   Discovering New Chemistry with an Autonomous Robotic Platform Driven by a Reactivity-Seeking Neural Network [J].
Caramelli, Dario ;
Granda, Jaroslaw M. ;
Mehr, S. Hessam M. ;
Cambie, Dario ;
Henson, Alon B. ;
Cronin, Leroy .
ACS CENTRAL SCIENCE, 2021, 7 (11) :1821-1830
[7]   OpenFlowChem - a platform for quick, robust and flexible automation and self- optimisation of flow chemistry [J].
Cherkasov, Nikolay ;
Bai, Yang ;
Exposito, Antonio Jose ;
Rebrov, Evgeny V. .
REACTION CHEMISTRY & ENGINEERING, 2018, 3 (05) :769-780
[8]   Evidences for the Key Role of Hydrogen Bonds in Nucleophilic Aromatic Substitution Reactions [J].
Cheron, Nicolas ;
El Kaim, Laurent ;
Grimaud, Laurence ;
Fleurat-Lessard, Paul .
CHEMISTRY-A EUROPEAN JOURNAL, 2011, 17 (52) :14929-14934
[9]   Streamlining bioactive molecular discovery through integration and automation [J].
Chow, Shiao ;
Liver, Samuel ;
Nelson, Adam .
NATURE REVIEWS CHEMISTRY, 2018, 2 (08) :174-183
[10]   Data-science driven autonomous process optimization [J].
Christensen, Melodie ;
Yunker, Lars P. E. ;
Adedeji, Folarin ;
Hase, Florian ;
Roch, Loic M. ;
Gensch, Tobias ;
dos Passos Gomes, Gabriel ;
Zepel, Tara ;
Sigman, Matthew S. ;
Aspuru-Guzik, Alan ;
Hein, Jason E. .
COMMUNICATIONS CHEMISTRY, 2021, 4 (01)