A repertoire of repulsive Keller-Segel models with logarithmic sensitivity: Derivation, traveling waves, and quasi-stationary dynamics

被引:1
作者
Luis Lopez, Jose [1 ,2 ]
机构
[1] Univ Granada, Dept Matemat Aplicada, Fac Ciencias, E-18071 Granada, Spain
[2] Univ Granada, Excellence Res Unit Modeling Nat MNat, Fac Ciencias, Granada, Spain
关键词
chemotaxis; logarithmic sensitivity; repulsive Keller-Segel model; Schrodinger-Doebner-Goldin equation; stationary solutions; traveling waves; PARABOLIC CHEMOTAXIS SYSTEM; REACTION-DIFFUSION EQUATIONS; BLOW-UP; SCHRODINGER-EQUATION; GLOBAL EXISTENCE; AGGREGATION; BOUNDEDNESS;
D O I
10.1002/mma.8638
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show how the chemotactic model {partial derivative(t)rho = d(1) Delta(x)rho - del(x) . (rho del(x)c) partial derivative(t)c = d(2) Delta(x)c + F(rho, c, del(x)rho, del(x)c, Delta x rho) introduced in Alejo and Lopez (2021), which accounts for a chemical production-degradation operator of Hamilton-Jacobi type involving first- and second-order derivatives of the logarithm of the cell concentration, namely, F = mu + tau c - sigma rho + A Delta(x)rho/rho + B vertical bar del(x)rho vertical bar(2)/rho(2) + C vertical bar del(x)c vertical bar(2), with mu, tau, sigma, A, B, C is an element of R, can be formally reduced to a repulsive Keller-Segel model with logarithmic sensitivity { partial derivative(t)rho = D-1 Delta(x)rho + chi del(x) . (rho del(x) log(c)), chi, lambda, beta > 0, partial derivative(t)c = D-2 Delta(x)c + lambda rho c - beta c whenever the chemotactic parameters are appropriately chosen and the cell concentration keeps strictly positive. In this way, some explicit solutions (namely, traveling waves and stationary cell density profiles) of the former system can be transferred to a number of variants of the the latter by means of an adequate change of variables.
引用
收藏
页码:2197 / 2221
页数:25
相关论文
共 53 条
[41]   NEGATIVE CHEMOTAXIS IN ESCHERICHIA-COLI [J].
TSO, WW ;
ADLER, J .
JOURNAL OF BACTERIOLOGY, 1974, 118 (02) :560-576
[42]  
Wang G, 2002, MATH NACHR, V233, P221, DOI 10.1002/1522-2616(200201)233:1<221::AID-MANA221>3.3.CO
[43]  
2-D
[44]   GLOBAL DYNAMICS AND DIFFUSION LIMIT OF A ONE-DIMENSIONAL REPULSIVE CHEMOTAXIS MODEL [J].
Wang, Zhi-an ;
Zhao, Kun .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (06) :3027-3046
[45]   MATHEMATICS OF TRAVELING WAVES IN CHEMOTAXIS REVIEW PAPER [J].
Wang, Zhi-An .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (03) :601-641
[46]   WAVEFRONT OF AN ANGIOGENESIS MODEL [J].
Wang, Zhi-An .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (08) :2849-2860
[47]   The two-dimensional Keller-Segel system with singular sensitivity and signal absorption: Global large-data solutions and their relaxation properties [J].
Winkler, Michael .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (05) :987-1024
[48]   Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system [J].
Winkler, Michael .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 100 (05) :748-767
[49]   Global solutions in a fully parabolic chemotaxis system with singular sensitivity [J].
Winkler, Michael .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (02) :176-190
[50]   Boundedness in the Higher-Dimensional Parabolic-Parabolic Chemotaxis System with Logistic Source [J].
Winkler, Michael .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (08) :1516-1537