A repertoire of repulsive Keller-Segel models with logarithmic sensitivity: Derivation, traveling waves, and quasi-stationary dynamics

被引:1
作者
Luis Lopez, Jose [1 ,2 ]
机构
[1] Univ Granada, Dept Matemat Aplicada, Fac Ciencias, E-18071 Granada, Spain
[2] Univ Granada, Excellence Res Unit Modeling Nat MNat, Fac Ciencias, Granada, Spain
关键词
chemotaxis; logarithmic sensitivity; repulsive Keller-Segel model; Schrodinger-Doebner-Goldin equation; stationary solutions; traveling waves; PARABOLIC CHEMOTAXIS SYSTEM; REACTION-DIFFUSION EQUATIONS; BLOW-UP; SCHRODINGER-EQUATION; GLOBAL EXISTENCE; AGGREGATION; BOUNDEDNESS;
D O I
10.1002/mma.8638
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show how the chemotactic model {partial derivative(t)rho = d(1) Delta(x)rho - del(x) . (rho del(x)c) partial derivative(t)c = d(2) Delta(x)c + F(rho, c, del(x)rho, del(x)c, Delta x rho) introduced in Alejo and Lopez (2021), which accounts for a chemical production-degradation operator of Hamilton-Jacobi type involving first- and second-order derivatives of the logarithm of the cell concentration, namely, F = mu + tau c - sigma rho + A Delta(x)rho/rho + B vertical bar del(x)rho vertical bar(2)/rho(2) + C vertical bar del(x)c vertical bar(2), with mu, tau, sigma, A, B, C is an element of R, can be formally reduced to a repulsive Keller-Segel model with logarithmic sensitivity { partial derivative(t)rho = D-1 Delta(x)rho + chi del(x) . (rho del(x) log(c)), chi, lambda, beta > 0, partial derivative(t)c = D-2 Delta(x)c + lambda rho c - beta c whenever the chemotactic parameters are appropriately chosen and the cell concentration keeps strictly positive. In this way, some explicit solutions (namely, traveling waves and stationary cell density profiles) of the former system can be transferred to a number of variants of the the latter by means of an adequate change of variables.
引用
收藏
页码:2197 / 2221
页数:25
相关论文
共 53 条
[1]   CHEMOTAXIS IN BACTERIA [J].
ADLER, J .
ANNUAL REVIEW OF BIOCHEMISTRY, 1975, 44 :341-356
[2]   Global well-posedness of logarithmic Keller-Segel type systems [J].
Ahn, Jaewook ;
Kang, Kyungkeun ;
Lee, Jihoon .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 287 :185-211
[3]   Modeling chemotaxis with nonstandard production/degradation mechanisms from Doebner-Goldin theory: Existence of solitary waves [J].
Alejo, Miguel A. ;
Lopez, Jose L. .
PHYSICA D-NONLINEAR PHENOMENA, 2021, 426
[4]  
[Anonymous], 2011, S MIN QU D RIV PARTI
[5]   Cross-diffusion and traveling waves in porous-media flux-saturated Keller-Segel models [J].
Arias, Margarita ;
Compos, Juan ;
Soler, Juan .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (11) :2103-2129
[6]   Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues [J].
Bellomo, N. ;
Bellouquid, A. ;
Tao, Y. ;
Winkler, M. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (09) :1663-1763
[7]  
Blanchet A, 2006, ELECTRON J DIFFER EQ
[8]   Exact minimum speed of traveling waves in a Keller-Segel model [J].
Bramburger, Jason J. .
APPLIED MATHEMATICS LETTERS, 2021, 111
[9]   TRAVELING WAVE AND AGGREGATION IN A FLUX-LIMITED KELLER-SEGEL MODEL [J].
Calvez, Vincent ;
Perthame, Benoit ;
Yasuda, Shugo .
KINETIC AND RELATED MODELS, 2018, 11 (04) :891-909
[10]   Blow-up, Concentration Phenomenon and Global Existence for the Keller-Segel Model in High Dimension [J].
Calvez, Vincent ;
Corrias, Lucilla ;
Ebde, Mohamed Abderrahman .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (04) :561-584