Proof of Modulational Instability of Stokes Waves in Deep Water

被引:17
作者
Nguyen, Huy Q. [1 ]
Strauss, Walter A. [2 ]
机构
[1] Brown Univ, Providence, RI 02912 USA
[2] Brown Univ, Dept Math, Lefschetz Ctr Dynam Syst, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
SMALL PERIODIC-WAVES; EQUATIONS; STABILITY;
D O I
10.1002/cpa.22073
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is proven that small-amplitude steady periodic water waves with infinite depth are unstable with respect to long-wave perturbations. This modulational instability was first observed more than half a century ago by Benjamin and Feir. It has been proven rigorously only in the case of finite depth. We provide a completely different and self-contained approach to prove the spectral modulational instability for water waves in both the finite and infinite depth cases. (c) 2022 Courant Institute of Mathematics and Wiley Periodicals LLC.
引用
收藏
页码:1035 / 1084
页数:50
相关论文
共 50 条
[41]   Modulational instability in the Whitham equation with surface tension and vorticity [J].
Hur, Vera Mikyoung ;
Johnson, Mathew A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 129 :104-118
[42]   Stability of plane waves on deep water with dissipation [J].
Canney, Nathan E. ;
Carter, John D. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2007, 74 (2-3) :159-167
[43]   Modeling the modulational instability of ion-acoustic waves in electron-ion plasma with Vasyliunas-Schamel distributed electrons [J].
Djebarni, L. ;
Annou, K. ;
Bennaceur-Doumaz, D. ;
Bellahsene, Z. .
JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2025,
[44]   Stokes Waves at the Critical Depth are Modulationally Unstable [J].
Berti, Massimiliano ;
Maspero, Alberto ;
Ventura, Paolo .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (03)
[45]   Interglacial instability of North Atlantic Deep Water ventilation [J].
Galaasen, Eirik Vinje ;
Ninnemann, Ulysses S. ;
Kessler, Augustin ;
Irvali, Nil ;
Rosenthal, Yair ;
Tjiputra, Jerry ;
Bouttes, Nathaelle ;
Roche, Didier M. ;
Kleiven, Helga F. ;
Hodell, David A. .
SCIENCE, 2020, 367 (6485) :1485-+
[46]   Modulational instability and position controllable discrete rogue waves with interaction phenomena in the semi-discrete complex coupled dispersionless system [J].
Lin, Zhe ;
Wen, Xiao-Yong .
WAVE MOTION, 2022, 112
[47]   Modulational instability in a tapered erbium doped fiber with inhomogeneous broadening [J].
Rajan, M. S. Mani ;
Veni, Saravana .
OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (03)
[48]   Modulational instability and zigzagging of dissipative solitons induced by delayed feedback [J].
Puzyrev, D. ;
Vladimirov, A. G. ;
Gurevich, S. V. ;
Yanchuk, S. .
PHYSICAL REVIEW A, 2016, 93 (04)
[49]   On the intracyclic instability in Stokes layers [J].
Zhang, Mengqi .
JOURNAL OF FLUID MECHANICS, 2025, 1013
[50]   Experimental Observation of Modulational Instability in Crossing Surface Gravity Wavetrains [J].
Steer, James N. ;
McAllister, Mark L. ;
Borthwick, Alistair G. L. ;
van den Bremer, Ton S. .
FLUIDS, 2019, 4 (02)