Proof of Modulational Instability of Stokes Waves in Deep Water

被引:13
作者
Nguyen, Huy Q. [1 ]
Strauss, Walter A. [2 ]
机构
[1] Brown Univ, Providence, RI 02912 USA
[2] Brown Univ, Dept Math, Lefschetz Ctr Dynam Syst, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
SMALL PERIODIC-WAVES; EQUATIONS; STABILITY;
D O I
10.1002/cpa.22073
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is proven that small-amplitude steady periodic water waves with infinite depth are unstable with respect to long-wave perturbations. This modulational instability was first observed more than half a century ago by Benjamin and Feir. It has been proven rigorously only in the case of finite depth. We provide a completely different and self-contained approach to prove the spectral modulational instability for water waves in both the finite and infinite depth cases. (c) 2022 Courant Institute of Mathematics and Wiley Periodicals LLC.
引用
收藏
页码:1035 / 1084
页数:50
相关论文
共 50 条
[31]   TRAVELING WAVES IN DEEP WATER WITH GRAVITY AND SURFACE TENSION [J].
Akers, Benjamin ;
Nicholls, David P. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2010, 70 (07) :2373-2389
[32]   Modulational instability of optically induced nematicon propagation [J].
Kavitha, L. ;
Venkatesh, M. ;
Dhamayanthi, S. ;
Gopi, D. .
CHINESE PHYSICS B, 2013, 22 (12)
[33]   MODULATIONAL INSTABILITY IN THE OSTROVSKY EQUATION AND RELATED MODELS [J].
Bhavna ;
Johnson, Mathew A. ;
Pandey, Ashish kumar .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (06) :7390-7416
[34]   Dynamics of the modulational instability in microresonator frequency combs [J].
Hansson, T. ;
Modotto, D. ;
Wabnitz, S. .
PHYSICAL REVIEW A, 2013, 88 (02)
[35]   A GEOMETRIC PROOF OF THE QUASI-LINEARITY OF THE WATER WAVES SYSTEM [J].
Said, Ayman Rimah .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (01) :508-556
[36]   Modulational Stability of Nonlinear Saturated Gravity Waves [J].
Schlutow, Mark .
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2019, 76 (11) :3327-3336
[37]   Modulational instability of ion acoustic waves in a multi-species collisionless magnetized plasma consisting of nonthermal and isothermal electrons [J].
Dalui, Sandip ;
Bandyopadhyay, Anup ;
Das, K. P. .
PHYSICS OF PLASMAS, 2017, 24 (10)
[38]   Modulational instability and associated low-frequency dust-acoustic waves in a degenerate Thomas-Fermi plasma: Envelope solitons and rogue waves [J].
Wahed, Fazal ;
Rahman, Ata-ur ;
Alyousef, Hiafa A. ;
El-Sherif, Lamiaa S. ;
El-Tantawy, Samir A. .
JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2025, 44 (02) :784-799
[39]   Modulational instability and solitons in nonlocal media with competing nonlinearities [J].
Esbensen, B. K. ;
Wlotzka, A. ;
Bache, M. ;
Bang, O. ;
Krolikowski, W. .
PHYSICAL REVIEW A, 2011, 84 (05)
[40]   Modulational instability in the Whitham equation with surface tension and vorticity [J].
Hur, Vera Mikyoung ;
Johnson, Mathew A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 129 :104-118