On the Elimination of Infinite Memory Effects on the Stability of a Nonlinear Non-homogeneous Rotating Body-Beam System

被引:3
作者
Chentouf, Boumediene [1 ]
Han, Zhong-Jie [2 ]
机构
[1] Kuwait Univ, Fac Sci, Dept Math, Safat 13060, Kuwait
[2] Tianjin Univ, Sch Math, Tianjin 300354, Peoples R China
关键词
Rotating disk-beam; Torque control; Moment control; Infinite memory; Exponential stability; Resolvent method; 2ND-ORDER EVOLUTION-EQUATIONS; GIBSON-THOMPSON EQUATION; BOUNDARY FEEDBACK STABILIZATION; MINIMAL STATE; ASYMPTOTIC STABILITY; FREE-ENERGIES; DECAY-RATE; TORQUE; DELAY;
D O I
10.1007/s10884-021-10111-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main concern of this article is to study the impact of the presence of an infinite memory term (boundary or distributed) on the stability of the rotating disk-beam system. On one hand, unlike the previous works, the compensating term is not of the same type as the infinite memory. On the other hand, the mass per unit length and the flexural rigidity of the beam are assumed to vary. Despite this situation, it is shown that if the standard torque control operates, then the system remains exponentially stable and the effect of the infinite memory term can be neutralized so that the beam's vibrations are suppressed and the disk rotates with a desired angular velocity. Of course, such an outcome is obtained under standard requirements on the memory kernel function and the desired constant angular velocity of the disk. The proof of the stability outcome relies on the resolvent method. Finally, numerical examples are provided to illustrate our outcomes.
引用
收藏
页码:1719 / 1743
页数:25
相关论文
共 56 条
[1]   Decay estimates for second order evolution equations with memory [J].
Alabau-Boussouira, Fatiha ;
Cannarsa, Piermarco ;
Sforza, Daniela .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (05) :1342-1372
[2]  
Amendola G, 2012, THERMODYNAMICS OF MATERIALS WITH MEMORY: THEORY AND APPLICATIONS, P1, DOI 10.1007/978-1-4614-1692-0
[3]  
[Anonymous], 1965, Real and abstract analysis
[4]   Energy decay in thermoelastic diffusion theory with second sound and dissipative boundary [J].
Aouadi, Moncef ;
Lazzari, Barbara ;
Nibbi, Roberta .
MECCANICA, 2013, 48 (09) :2159-2171
[5]   Exponential decay in thermoelastic materials with voids and dissipative boundary without thermal dissipation [J].
Aouadi, Moncef ;
Lazzari, Barbara ;
Nibbi, Roberta .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (05) :961-973
[6]   ROTATIONAL ELASTIC DYNAMICS [J].
BAILLIEUL, J ;
LEVI, M .
PHYSICA D, 1987, 27 (1-2) :43-62
[7]  
Brezis H, 2011, UNIVERSITEXT, P1, DOI 10.1007/978-0-387-70914-7_1
[8]   Exponential stability for the wave model with localized memory in a past history framework [J].
Cavalcanti, M. M. ;
Domingos Cavalcanti, V. N. ;
Jorge Silva, M. A. ;
de Souza Franco, A. Y. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (11) :6535-6584
[9]   Existence and sharp decay rate estimates for a von Karman system with long memory [J].
Cavalcanti, Marcelo M. ;
Cavalcanti, Andre D. D. ;
Lasiecka, Irena ;
Wang, Xiaojun .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 22 :289-306
[10]   NONDISSIPATIVE TORQUE AND SHEAR FORCE CONTROLS OF A ROTATING FLEXIBLE STRUCTURE [J].
Chen, Xin ;
Chentouf, Boumediene ;
Wang, Jun-Min .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (05) :3287-3311