FusedNet: End-to-End Mobile Robot Relocalization in Dynamic Large-Scale Scene

被引:1
|
作者
Chen, Fang-xing [1 ]
Tang, Yifan [1 ]
Tai, Cong [1 ]
Liu, Xue-ping [1 ]
Wu, Xiang [2 ]
Zhang, Tao [2 ]
Zeng, Long [1 ]
机构
[1] Tsinghua Univ, Shenzhen Int Grad Sch, Dept Adv Mfg, Shenzhen 518000, Peoples R China
[2] Shenzhen Pudu Technol Ltd, Shenzhen 518057, Peoples R China
关键词
Mobile robot; cross-attention; fused feature; end-to-end relocalization; POSE REGRESSOR; FEATURES;
D O I
10.1109/LRA.2024.3372465
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
To improve robot relocalization accuracy in both static and dynamic environments, we introduce a novel network, FusedNet, which incorporates a cross-attention to fuse global and local image features for end-to-end relocalization. This approach relies solely on a monocular camera sensor that is fixed on the mobile robot, and directly predicts the absolute pose from the input RGB image. Additionally, we have collected a mobile robot relocalization dataset, termed moBotReloc, consisting of dynamic large-scale scenes, using the Unity 3D simulation platform and a real mobile robot. Through extensive experiments on 7Scenes and moBotReloc, we demonstrate that FusedNet achieves significant accuracy in 6-DoF camera relocalization in static scenes, and exhibits superior relocalization performance in dynamic large-scale scenes for mobile robot applications, outperforming existing end-to-end methods that rely solely on a single global or local feature.
引用
收藏
页码:4099 / 4105
页数:7
相关论文
共 50 条
  • [1] TextOCR: Towards large-scale end-to-end reasoning for arbitrary-shaped scene text
    Singh, Amanpreet
    Peng, Guan
    Toh, Mandy
    Huang, Jing
    Galuba, Wojciech
    Hassner, Tal
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 8798 - 8808
  • [2] END-TO-END APPROACH TO LARGE-SCALE MULTIMEDIA DISSEMINATION
    YAVATKAR, R
    MANOJ, L
    COMPUTER COMMUNICATIONS, 1994, 17 (03) : 205 - 217
  • [3] A large-scale dataset for end-to-end table recognition in the wild
    Fan Yang
    Lei Hu
    Xinwu Liu
    Shuangping Huang
    Zhenghui Gu
    Scientific Data, 10
  • [4] An end-to-end workflow pipeline for large-scale Grid computing
    McGough A.S.
    Cohen J.
    Darlington J.
    Katsiri E.
    Lee W.
    Panagiotidi S.
    Patel Y.
    Journal of Grid Computing, 2005, 3 (3-4) : 259 - 281
  • [5] SCALING END-TO-END MODELS FOR LARGE-SCALE MULTILINGUAL ASR
    Li, Bo
    Pang, Ruoming
    Sainath, Tara N.
    Gulati, Anmol
    Zhang, Yu
    Qin, James
    Haghani, Parisa
    Huang, W. Ronny
    Ma, Min
    Bai, Junwen
    2021 IEEE AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING WORKSHOP (ASRU), 2021, : 1011 - 1018
  • [6] A large-scale dataset for end-to-end table recognition in the wild
    Yang, Fan
    Hu, Lei
    Liu, Xinwu
    Huang, Shuangping
    Gu, Zhenghui
    SCIENTIFIC DATA, 2023, 10 (01)
  • [7] Learning an End-to-End Structure for Retrieval in Large-Scale Recommendations
    Gao, Weihao
    Fan, Xiangjun
    Wang, Chong
    Sun, Jiankai
    Jia, Kai
    Xiao, Wenzhi
    Ding, Ruofan
    Bin, Xingyan
    Yang, Hui
    Liu, Xiaobing
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 524 - 533
  • [8] Mobile Robot Oriented Large-Scale Indoor Dataset for Dynamic Scene Understanding
    Tang, Yi-Fan
    Tai, Cong
    Chen, Fang-Xing
    Zhang, Wan-Ting
    Zhang, Tao
    Liu, Xue-Ping
    Liu, Yong-Jin
    Zeng, Long
    2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2024, 2024, : 613 - 620
  • [9] Large-Scale Multilingual Speech Recognition with a Streaming End-to-End Model
    Kannan, Anjuli
    Datta, Arindrima
    Sainath, Tara N.
    Weinstein, Eugene
    Ramabhadran, Bhuvana
    Wu, Yonghui
    Bapna, Ankur
    Chen, Zhifeng
    Lee, Seungji
    INTERSPEECH 2019, 2019, : 2130 - 2134
  • [10] Large-scale behavior of end-to-end epidemic message loss recovery
    Özkasap, Ö
    FROM QOS PROVISIONING TO QOS CHARGING, PROCEEDINGS, 2002, 2511 : 25 - 35