NEURAL RADIANCE FIELDS (NERF): REVIEW AND POTENTIAL APPLICATIONS TO DIGITAL CULTURAL HERITAGE

被引:17
|
作者
Croce, V. [1 ]
Caroti, G. [2 ]
De Luca, L. [3 ]
Piemonte, A. [2 ]
Veron, P. [4 ]
机构
[1] Univ Pisa, Dept Energy Syst Land & Construct Engn, I-56122 Pisa, Italy
[2] Univ Pisa, Dept Civil & Ind Engn, I-56122 Pisa, Italy
[3] CNRS MC, UMR MAP 3495, Campus CNRS Joseph Aiguier, F-13402 Marseille, France
[4] Arts & Metiers Inst Technol, LISPEN EA 7515, F-13100 Aix En Provence, France
来源
29TH CIPA SYMPOSIUM DOCUMENTING, UNDERSTANDING, PRESERVING CULTURAL HERITAGE. HUMANITIES AND DIGITAL TECHNOLOGIES FOR SHAPING THE FUTURE, VOL. 48-M-2 | 2023年
关键词
NeRF; Neural Radiance Fields; Cultural Heritage; photogrammetry; 3D reconstruction; Artificial Intelligence;
D O I
10.5194/isprs-archives-XLVIII-M-2-2023-453-2023
中图分类号
K85 [文物考古];
学科分类号
0601 ;
摘要
Neural Radiance Fields (NeRF or NeRFs) are to date emerging as a novel method for synthesizing novel views of complex 3D scenes, leveraging an artificial neural network to optimize a volumetric scene function using a set of input views. We conduct a preliminary critical review of the scientific and technical literature on NeRFs, and we highlight possible applications of the latter in the Cultural Heritage domain, for the image-based reconstruction of 3D models of real, multi-scale objects, even in combination with the more well-established photogrammetric techniques. A comparison is made between NeRFs and photogrammetry in terms of operating procedures and outputs (volumetric renderings vs. point clouds or meshes). It is demonstrated that NeRFs could be conveniently used for rendering objects (sculptures, archaeological remains, sites, paintings etc.) that are challenging for photogrammetry, typically: i) metallic, translucent, and/or transparent surfaces; ii) objects that present homogeneous textures; iii) occlusions, vegetation, and elements of very fine detail.
引用
收藏
页码:453 / 460
页数:8
相关论文
共 50 条
  • [1] nerf2nerf: Pairwise Registration of Neural Radiance Fields
    Goli, Lily
    Rebain, Daniel
    Sabour, Sara
    Garg, Animesh
    Tagliasacchi, Andrea
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 9354 - 9361
  • [2] D-NeRF: Neural Radiance Fields for Dynamic Scenes
    Pumarola, Albert
    Corona, Enric
    Pons-Moll, Gerard
    Moreno-Noguer, Francesc
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 10313 - 10322
  • [3] DReg-NeRF: Deep Registration for Neural Radiance Fields
    Chen, Yu
    Lee, Gim Hee
    arXiv, 2023,
  • [4] Strata-NeRF : Neural Radiance Fields for Stratified Scenes
    Dhiman, Ankit
    Srinath, R.
    Rangwani, Harsh
    Parihar, Rishubh
    Boregowda, Lokesh R.
    Sridhar, Srinath
    Babu, R. Venkatesh
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 17557 - 17568
  • [5] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
    Mildenhall, Ben
    Srinivasan, Pratul P.
    Tancik, Matthew
    Barron, Jonathan T.
    Ramamoorthi, Ravi
    Ng, Ren
    COMMUNICATIONS OF THE ACM, 2022, 65 (01) : 99 - 106
  • [6] NeRF-Editing: Geometry Editing of Neural Radiance Fields
    Yuan, Yu-Jie
    Sun, Yang-Tian
    Lai, Yu-Kun
    Ma, Yuewen
    Jia, Rongfei
    Gao, Lin
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 18332 - 18343
  • [7] SeaThru-NeRF: Neural Radiance Fields in Scattering Media
    Levy, Deborah
    Peleg, Amit
    Pearl, Naama
    Rosenbaum, Dan
    Akkaynak, Derya
    Korman, Simon
    Treibitz, Tali
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 56 - 65
  • [8] NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections
    Martin-Brualla, Ricardo
    Radwan, Noha
    Sajjadi, Mehdi S. M.
    Barron, Jonathan T.
    Dosovitskiy, Alexey
    Duckworth, Daniel
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 7206 - 7215
  • [9] DReg-NeRF: Deep Registration for Neural Radiance Fields
    Chen, Yu
    Lee, Gim Hee
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 22646 - 22656
  • [10] DReg-NeRF: Deep Registration for Neural Radiance Fields
    Chen, Yu
    Lee, Gim Hee
    Proceedings of the IEEE International Conference on Computer Vision, 2023, : 22646 - 22656