Variational and Numerical Approximations for Higher Order Fractional Sturm-Liouville Problems

被引:1
|
作者
Pandey, Divyansh [1 ]
Pandey, Prashant K. [2 ]
Pandey, Rajesh K. [1 ]
机构
[1] Indian Inst Technol BHU, Dept Math Sci, Varanasi 221005, Uttar Pradesh, India
[2] VIT Bhopal Univ, Sch Adv Sci & Languages, Dept Math, Sehore 466114, Madhya Pradesh, India
关键词
Fractional variational analysis; Fractional Sturm-Liouville problem (FSLP); Calculus of variations; EULER-LAGRANGE EQUATIONS; UNBOUNDED-DOMAINS THEORY; CALCULUS;
D O I
10.1007/s42967-023-00340-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to studying the variational approximation for the higher order regular fractional Sturm-Liouville problems (FSLPs). Using variational principle, we demonstrate that the FSLP has a countable set of eigenvalues and corresponding unique eigenfunctions. Furthermore, we establish two results showing that the eigenfunctions corresponding to distinct eigenvalues are orthogonal, and the smallest (first) eigenvalue is the minimizer of the functional. To validate the theoretical result, we also present a numerical method using polynomials phi j(t)=tj+1(1-t)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi _j(t) = t<^>{j+1}(1-t)<^>2$$\end{document} for j=1,2,3,MIDLINE HORIZONTAL ELLIPSIS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j=1,2,3,\cdots $$\end{document} as a basis function. Further, the Lagrange multiplier method is used to reduce the fractional variational problem into a system of algebraic equations. In order to find the eigenvalues and eigenfunctions, we solve the algebraic system of equations. Further, the analytical convergence and the absolute error of the method are analyzed.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] An efficient numerical method for estimating eigenvalues and eigenfunctions of fractional Sturm-Liouville problems
    Sadabad, Mahnaz Kashfi
    Akbarfam, Aliasghar Jodayree
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 185 : 547 - 569
  • [32] Numerical algorithms for inverse Sturm-Liouville problems
    Jiang, Xiaoying
    Li, Xiaowen
    Xu, Xiang
    NUMERICAL ALGORITHMS, 2022, 89 (03) : 1287 - 1309
  • [33] A VARIATIONAL APPROACH OF THE STURM-LIOUVILLE PROBLEM IN FRACTIONAL DIFFERENCE CALCULUS
    Mert, Raziye
    Erbe, Lynn
    Abdeljawad, Thabet
    DYNAMIC SYSTEMS AND APPLICATIONS, 2018, 27 (01): : 137 - 148
  • [34] Sturm-Liouville problems
    Zettl, A
    SPECTRAL THEORY AND COMPUTATIONAL METHODS OF STURM-LIOUVILLE PROBLEMS, 1997, 191 : 1 - 104
  • [35] Convergence of regular approximations to the spectra of singular fourth-order Sturm-Liouville problems
    Brown, M
    Greenberg, L
    Marletta, M
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 : 907 - 944
  • [36] Numerical approximation to Prabhakar fractional Sturm-Liouville problem
    Derakhshan, Mohammad Hossein
    Ansari, Alireza
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (02):
  • [37] Dependence of Eigenvalues of a Class of Higher-Order Sturm-Liouville Problems on the Boundary
    Yang, Qiuxia
    Wang, Wanyi
    Gao, Xingchao
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [38] Some notes on conformable fractional Sturm-Liouville problems
    Wang, Wei-Chuan
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [39] Inverse problems for a conformable fractional Sturm-Liouville operator
    Adalar, Ibrahim
    Ozkan, Ahmet Sinan
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2020, 28 (06): : 775 - 782
  • [40] Eigenvalues of fractional Sturm-Liouville problems by successive method
    Maralani, Elnaz Massah
    Saei, Farhad Dastmalchi
    Akbarfam, Ali Asghar Jodayree
    Ghanbari, Kazem
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2021, 9 (04): : 1163 - 1175