Constructing the Asymptotics of Solutions to Differential Sturm-Liouville Equations in Classes of Oscillating Coefficients

被引:0
|
作者
Valeev, N. F. [1 ]
Nazirova, E. A. [2 ]
Sultanaev, Ya. T. [3 ,4 ]
机构
[1] Russian Acad Sci, Inst Math, Comp Ctr, Ufa Fed Res Ctr, Ufa, Russia
[2] Ufa Univ Sci & Technol, Ufa, Russia
[3] Lomonosov Moscow State Univ, Fac Mech & Math, Chair Math Anal, Moscow, Russia
[4] Lomonosov Moscow State Univ, Ctr Appl & Fundamental Math, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
asymptotic methods; Sturm-Liouville equation; oscillating coefficients; BEHAVIOR;
D O I
10.3103/S0027132223050066
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The article is focused on the development of a method allowing one to construct asymptotics for solutions to ODEs of arbitrary order with oscillating coefficients on the semiaxis. The idea of the method is presented on the example of studying the asymptotics of the Sturm-Liouville equation.
引用
收藏
页码:253 / 257
页数:5
相关论文
共 50 条
  • [21] A REMARK ON SINGULAR STURM-LIOUVILLE DIFFERENTIAL EQUATIONS
    STEIN, FM
    KLOPFENSTEIN, KF
    AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (04): : 409 - &
  • [22] Riesz bases of solutions of Sturm-Liouville equations
    Xionghui He
    Hans Volkmer
    Journal of Fourier Analysis and Applications, 2001, 7 : 297 - 307
  • [23] Riesz bases of solutions of Sturm-Liouville equations
    He, XH
    Volkmer, H
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2001, 7 (03) : 297 - 307
  • [24] Asymptotics of the eigenvalues of Sturm-Liouville problem
    T. N. Harutyunyan
    Journal of Contemporary Mathematical Analysis, 2016, 51 : 173 - 181
  • [25] DIRECT SOLUTIONS FOR STURM-LIOUVILLE SYSTEMS WITH DISCONTINUOUS COEFFICIENTS
    HODGES, DH
    AIAA JOURNAL, 1979, 17 (08) : 924 - 926
  • [26] Asymptotics of the Eigenvalues of Sturm-Liouville Problem
    Harutyunyan, T. N.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2016, 51 (04): : 173 - 181
  • [27] Existence of Solutions for Sturm-Liouville Boundary Value Problem of Impulsive Differential Equations
    Sun, Hong-Rui
    Li, Ya-Ning
    Nieto, Juan J.
    Tang, Qing
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [28] EXISTENCE OF POSITIVE SOLUTIONS FOR STURM-LIOUVILLE BVPS OF SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS
    Liu, Yuji
    He, Tieshan
    Shi, Haiping
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2012, 74 (01): : 93 - 108
  • [29] NONTRIVIAL SOLUTIONS FOR IMPULSIVE STURM-LIOUVILLE DIFFERENTIAL EQUATIONS WITH NONLINEAR DERIVATIVE DEPENDENCE
    Caristi, Giuseppe
    Ferrara, Massimiliano
    Heidarkhani, Shapour
    Tiani, Yu
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2017, 30 (11-12) : 989 - 1010
  • [30] Existence of positive solutions for Sturm-Liouville BVPs of singular fractional differential equations
    Liu, Y. (liuyuji888@sohu.com), 1600, Politechnica University of Bucharest, Splaiul Independentei 313 - Sector 6, Bucharest, 77206, Romania (74):