A pedagogical approach for the development and optimization of a novel mix of biowastes-derived hydroxyapatite using the Box-Behnken experimental design

被引:2
|
作者
Osuchukwu, Obinna Anayo [1 ,6 ]
Salihi, Abdu [1 ]
Abdullahi, Ibrahim [1 ]
Abdulkareem, Bello [1 ]
Salami, Kazeem Adeniyi [2 ,6 ]
Etinosa, Precious Osayamen [3 ]
Nwigbo, Solomon C. [4 ]
Mohammed, Sikiru Adepoju [5 ]
Obada, David Olubiyi [2 ,6 ,7 ]
机构
[1] Bayero Univ, Dept Mech Engn, Kano 700241, Kano, Nigeria
[2] Ahmadu Bello Univ, Dept Mech Engn, Zaria 810212, Kaduna, Nigeria
[3] Worcester Polytech Inst, Dept Mech Engn, 100 Inst Rd, Worcester, MA 01609 USA
[4] Nnamdi Azikiwe Univ, Dept Mech Engn, Awka 420007, Anambra, Nigeria
[5] Nigerian Def Acad, Mech Engn Dept, Kaduna 2109, Nigeria
[6] Ahmadu Bello Univ, Shell Chair Off Mech Engn, Multifunct Mat Lab, Zaria 810222, Kaduna, Nigeria
[7] Ahmadu Bello Univ, Africa Ctr Excellence New Pedag Engn Educ, Zaria 810222, Kaduna, Nigeria
关键词
Calcination; Mechanical property; Porosity; Sol-gel; Sintering temperature; Engineering education; RESPONSE-SURFACE METHODOLOGY; NATURAL HYDROXYAPATITE; EXPERIMENTS DOE; KAOLIN; SOLUBILITY; CERAMICS; HARDNESS; PURE; BONE;
D O I
10.1016/j.heliyon.2023.e23092
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The current study details the creation of synthetic hydroxyapatite (HAp) using a combination of catfish and bovine bones (C&B). This is done to design the optimum processing parameters and consolidate instructional strategies to develop HAp scaffolds for biomedical engineering. The HAp produced from the novel mix of the biogenic materials (C&B) was through calcination and supported with the sol-gel technique, sintering, and low-cold compaction pressure. The ideal preparation conditions were identified with the aid of the Box-Behnken statistical design in response surface methodology. To understand the physicochemical and mechanical properties of the formulation, analytical studies on the synthesized HAp were carried out. To establish a substantial relation between the physicomechanical properties of the produced HAp scaffolds, three parameters- sintering temperature, compaction loads, and holding times were used. In the evaluation, the sintering temperature was found to have the greatest impact on the material's physicomechanical properties, with compressive strength (13 MPa), porosity (49.45 %), and elastic modulus (2.216 GPa) being the most enhanced properties in that order. The physicomechanical characteristics of the HAp scaffolds were at their optimal at 900 degrees C, 1 h 18 min of holding time, and 311.73 Pa of compaction pressure. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) results showed that powders with a dominant HAp phase were produced at all runs, including the optimum run. Therefore, using a computationally effective methodology that is helpful for novelties in biomedical engineering education, this study demonstrates the optimal process for the synthesis of a novel matrix bone-derived HAp, showing the most significant relations liable for manufacturing medically suitable HAp scaffolds from the mixture of bovine and catfish bones.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Box-Behnken experimental design for the process optimization of catfish bones derived hydroxyapatite: A pedagogical approach
    Akpan, E. S.
    Dauda, M.
    Kuburi, L. S.
    Obada, D. O.
    MATERIALS CHEMISTRY AND PHYSICS, 2021, 272
  • [2] Development and Optimization of Ciprofloxacin HCl-Loaded Chitosan Nanoparticles Using Box-Behnken Experimental Design
    Soliman, Noha M.
    Shakeel, Faiyaz
    Haq, Nazrul
    Alanazi, Fars K.
    Alshehri, Sultan
    Bayomi, Mohsen
    Alenazi, Ahmed S. M.
    Alsarra, Ibrahim A.
    MOLECULES, 2022, 27 (14):
  • [3] Optimization of electrochemical ammonia removal using Box-Behnken design
    Li, Miao
    Feng, Chuanping
    Zhang, Zhenya
    Liu, Xiang
    Ma, Weifang
    Xue, Qiang
    Sugiura, Norio
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2011, 657 (1-2) : 66 - 73
  • [4] Optimization of air permeability of spunlaced filter fabrics using the Box-Behnken experimental design
    Maduna, Lebo
    Patnaik, Asis
    Mvubu, Mlando
    Hunter, Lawrance
    JOURNAL OF INDUSTRIAL TEXTILES, 2020, 50 (05) : 675 - 691
  • [5] Box-Behnken experimental design for the optimization of enzymatic saccharification of wheat bran
    Silva, Tatielle Pereira
    Ferreira, Alexsandra Nascimento
    de Albuquerque, Fabiana Sarmento
    de Almeida Barros, Andrea Carla
    Rodrigues da Luz, Jose Maria
    Gomes, Francis Soares
    Vieira Pereira, Hugo Juarez
    BIOMASS CONVERSION AND BIOREFINERY, 2022, 12 (12) : 5597 - 5604
  • [6] Development and optimization of gastroretentive mucoadhesive microspheres of gabapentin by Box-Behnken design
    Gaur, Praveen Kumar
    Mishra, Shikha
    Kumar, Avdhesh
    Panda, Bibhu Prasad
    ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY, 2014, 42 (03) : 167 - 177
  • [7] Optimization of photocatalytic degradation of rhodamine B using Box-Behnken experimental design: Mineralization and mechanism
    Madjene, Farid
    Assassi, Mirvet
    Chokri, Imene
    Enteghar, Tanina
    Lebik, Hafida
    WATER ENVIRONMENT RESEARCH, 2021, 93 (01) : 112 - 122
  • [8] Optimization of diesel biodegradation by Vibrio alginolyticus using Box-Behnken design
    Imron, Muhammad Fauzul
    Titah, Harmin Sulistiyaning
    ENVIRONMENTAL ENGINEERING RESEARCH, 2018, 23 (04) : 374 - 382
  • [9] Optimization of corona discharge process using Box-Behnken design of experiments
    Das, Dipayan
    Thakur, Rashmi
    Pradhan, Arun Kumar
    JOURNAL OF ELECTROSTATICS, 2012, 70 (06) : 469 - 473
  • [10] Optimization of cadmium biosorption by Shewanella putrefaciens using a Box-Behnken design
    Yuan, Wenjuan
    Cheng, Juan
    Huang, Hexiang
    Xiong, Suli
    Gao, Jingqi
    Zhang, Jie
    Feng, Su
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2019, 175 : 138 - 147