Global solutions to the rotating Navier-Stokes equations with large data in the critical Fourier-Besov spaces

被引:0
作者
Fujii, Mikihiro [1 ,2 ]
机构
[1] Kyushu Univ, Grad Sch Math, Fukuoka, Japan
[2] Kyushu Univ, Grad Sch Math, Fukuoka 8190395, Japan
基金
日本学术振兴会;
关键词
Fourier-Besov spaces; global solutions; large data; the rotating Navier-Stokes equations; WELL-POSEDNESS; CORIOLIS-FORCE; ILL-POSEDNESS; EULER EQUATIONS; 3D EULER; REGULARITY; INTEGRABILITY;
D O I
10.1002/mana.202300226
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the initial value problem for the 3D incompressible Navier-Stokes equations with the Coriolis force. The aim of this paper is to prove the existence of a unique global solution with arbitrarily large initial data in the scaling critical Fourier-Besov spaces <((B) over dot)over cap>(3/p-1)(p,sigma) (R-3)(3) (2 <= p < 4, 1 <= sigma < infinity), provided that the size of the Coriolis parameter is sufficiently large. Moreover, if the initial data additionally belong to the scaling sub-critical spaces, we obtain an explicit relationship between the initial data and the Coriolis force, which ensures the existence of a unique global solution.
引用
收藏
页码:1678 / 1693
页数:16
相关论文
共 34 条
[1]  
[Anonymous], 2007, Adv. Differ. Equ
[2]   Global regularity of 3D rotating Navier-Stokes equations for resonant domains [J].
Babin, A ;
Mahalov, A ;
Nicolaenko, B .
APPLIED MATHEMATICS LETTERS, 2000, 13 (04) :51-57
[3]  
Babin A, 1997, ASYMPTOTIC ANAL, V15, P103
[4]  
Babin A, 1996, EUR J MECH B-FLUID, V15, P291
[5]  
Babin A, 2001, INDIANA U MATH J, V50, P1
[6]  
Babin A, 1999, INDIANA U MATH J, V48, P1133
[7]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7_1
[8]   Ill-posedness of the Navier-Stokes equations in a critical space in 3D [J].
Bourgain, Jean ;
Pavlovic, Natasa .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (09) :2233-2247
[9]  
Chemin J.-Y., 2006, OXFORD LECT SERIES M, V32
[10]   FLOW OF NON-LIPSCHITZ VECTOR-FIELDS AND NAVIER-STOKES EQUATIONS [J].
CHEMIN, JY ;
LERNER, N .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 121 (02) :314-328