Multi-domain mixup for scenario-universal face anti-spoofing

被引:1
|
作者
Lu, Shitao [1 ,2 ]
Liu, Shice [3 ]
Zhang, Keyue [3 ]
Chen, Mingang [2 ]
Tan, Xin [1 ,2 ]
Ma, Lizhuang [1 ]
机构
[1] East China Normal Univ, Shanghai, Peoples R China
[2] Shanghai Key Lab Comp Software Evaluating & Testin, Shanghai, Peoples R China
[3] Tencent, Youtu Lab, Shenzhen, Peoples R China
来源
COMPUTERS & GRAPHICS-UK | 2023年 / 116卷
基金
中国国家自然科学基金;
关键词
Face anti-spoofing; Disentangling; Generative model;
D O I
10.1016/j.cag.2023.08.006
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Recently, disentangled representation learning has been commonly used in face anti-spoofing (FAS). However, such method has limited generalization ability due to the lack of data domains in the training phase. To overcome this issue, we devise a novel disentangling framework, which contains Progressive Refinement Disentangling (PRD) module and Multi-Domain Mixup (MDM) module. Concretely, face images are well disentangled into liveness features and domain features via the PRD module. The MDM module aims to produce more diverse domain features to generate faces of brand-new domains. The generated faces could improve the generalization ability of model in a data augmentation manner. Moreover, our disentangling framework is capable of tapping the potential of unlabeled data so it is universal in semi-supervised, domain generalization and adaption scenarios. Extensive experiments demonstrate the effectiveness of our method on public datasets.(c) 2023 Published by Elsevier Ltd.
引用
收藏
页码:327 / 335
页数:9
相关论文
共 50 条
  • [1] Multi-Domain Feature Alignment for Face Anti-Spoofing
    Zhang, Shizhe
    Nie, Wenhui
    SENSORS, 2023, 23 (08)
  • [2] Unsupervised Domain Adaptation for Face Anti-Spoofing
    Li, Haoliang
    Li, Wen
    Cao, Hong
    Wang, Shiqi
    Huang, Feiyue
    Kot, Alex C.
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2018, 13 (07) : 1794 - 1809
  • [3] Generative Domain Adaptation for Face Anti-Spoofing
    Zhou, Qianyu
    Zhang, Ke-Yue
    Yao, Taiping
    Yi, Ran
    Sheng, Kekai
    Ding, Shouhong
    Ma, Lizhuang
    COMPUTER VISION - ECCV 2022, PT V, 2022, 13665 : 335 - 356
  • [4] A Cross Domain Multi-modal Dataset for Robust Face Anti-spoofing
    Ji, Qiaobin
    Xu, Shugong
    Chen, Xudong
    Zhang, Shunqing
    Cao, Shan
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 4309 - 4316
  • [5] Surveillance Face Anti-Spoofing
    Fang, Hao
    Liu, Ajian
    Wan, Jun
    Escalera, Sergio
    Zhao, Chenxu
    Zhang, Xu
    Li, Stan Z.
    Lei, Zhen
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 1535 - 1546
  • [6] Towards face anti-spoofing
    Syed, Muhammad Ibrahim
    Asif, Amina
    Shahzad, Mohsin
    Khan, Uzair
    Khan, Sumair
    Mahmood, Zahid
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2023,
  • [7] Domain Generalization with Pseudo-Domain Label for Face Anti-spoofing
    Kim, Young Eun
    Lee, Seong-Whan
    PATTERN RECOGNITION, ACPR 2021, PT I, 2022, 13188 : 431 - 442
  • [8] A Review on Face Anti-spoofing
    Jiang F.-L.
    Liu P.-C.
    Zhou X.-D.
    Zhou, Xiang-Dong (zhouxiangdong@cigit.ac.cn), 1799, Science Press (47): : 1799 - 1821
  • [9] Face anti-spoofing via conditional adversarial domain generalization
    Cai T.
    Chen F.
    Liu W.
    Xie X.
    Liu Z.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (12) : 16499 - 16512
  • [10] DOMAIN-GENERALIZED FACE ANTI-SPOOFING WITH UNKNOWN ATTACKS
    Hong, Zong-Wei
    Lin, Yu-Chen
    Liu, Hsuan-Tung
    Yeh, Yi-Ren
    Chen, Chu-Song
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 820 - 824