A Light-Thin Chitosan Nanofiber Separator for High-Performance Lithium-Ion Batteries

被引:6
作者
Song, Yanghui [1 ]
Zhao, Guanglei [1 ]
Zhang, Sihan [1 ]
Xie, Chong [1 ]
Li, Xiaofeng [2 ]
机构
[1] South China Univ Technol, Sch Light Ind & Engn, State Key Lab Pulp & Paper Engn, Guangzhou 510641, Peoples R China
[2] South China Univ Technol, Sch Food Sci & Engn, Guangzhou 510644, Peoples R China
基金
中国国家自然科学基金;
关键词
chitosan; nanofiber; separator; lithium-ion battery; nano-porous structure; RECENT PROGRESS; PORE STRUCTURE; THICKNESS; MEMBRANES; CELLULOSE;
D O I
10.3390/polym15183654
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
With the development of portable devices and wearable devices, there is a higher demand for high-energy density and light lithium-ion batteries (LIBs). The separator is a significant component directly affecting the performance of LIBs. In this paper, a thin and porous chitosan nanofiber separator was successfully fabricated using the simple ethanol displacement method. The thickness of the CME15 separator was about half that of mainstream commercial Celgard2325 separators. Owing to its inherent polarity and high porosity, the obtained CME15 separator achieved a small contact angle (18 & DEG;) and excellent electrolyte wettability (324% uptake). The CME15 separator could maintain excellent thermal dimensional stability at 160 & DEG;C. Furthermore, the CME15 separator-based LIBs exhibited excellent cycling performance after 100 cycles (117 mAh g-1 at 1 C). The present work offers a perspective on applying a chitosan nanofiber separator in light and high-performance lithium-ion batteries (LIBs).
引用
收藏
页数:15
相关论文
共 64 条
[11]   Lithium-Ion Battery Separators for Ionic-Liquid Electrolytes: A Review [J].
Francis, Candice F. J. ;
Kyratzis, Ilias L. ;
Best, Adam S. .
ADVANCED MATERIALS, 2020, 32 (18)
[12]   Coaxially electrospun PAN/HCNFs@PVDF/UiO-66 composite separator with high strength and thermal stability for lithium-ion battery [J].
Fu, Qingshan ;
Zhang, Wei ;
Muhammad, Ismail Pir ;
Chen, Xuedan ;
Zeng, Yue ;
Wang, Botao ;
Zhang, Shangyun .
MICROPOROUS AND MESOPOROUS MATERIALS, 2021, 311
[13]   Investigation on contact angle measurement methods and wettability transition of porous surfaces [J].
Gu, Hanyang ;
Wang, Chi ;
Gong, Shengjie ;
Mei, Yong ;
Li, Huang ;
Ma, Weimin .
SURFACE & COATINGS TECHNOLOGY, 2016, 292 :72-77
[14]   Resin-silica composite nanoparticle grafted polyethylene membranes for lithium ion batteries [J].
Gu, Qian-Qian ;
Fu, Cui-Liu ;
Sun, Zhao-Yan .
JOURNAL OF APPLIED POLYMER SCIENCE, 2021, 138 (30)
[15]   High-performance polyethylene separators for lithium-ion batteries modified by phenolic resin [J].
Gu, Qian-Qian ;
Xue, Hong-Jin ;
Li, Zhan-Wei ;
Song, Jing-Chuan ;
Sun, Zhao-Yan .
JOURNAL OF POWER SOURCES, 2021, 483
[16]   Degradation in lithium ion battery current collectors [J].
Guo, Liya ;
Thornton, Daisy B. ;
Koronfel, Mohamed A. ;
Stephens, Ifan E. L. ;
Ryan, Mary P. .
JOURNAL OF PHYSICS-ENERGY, 2021, 3 (03)
[17]   Silkworm Cocoon Layer with Gradient Structure as Separator for Lithium-Ion Battery [J].
Guo, Xuesong ;
Li, Jiayi ;
Xing, Jianxin ;
Zhang, Kai ;
Zhou, Yige ;
Pan, Chen ;
Wei, Zhenzhen ;
Zhao, Yan .
ENERGY TECHNOLOGY, 2022, 10 (04)
[18]   Dual impact of superior SEI and separator wettability to inhibit lithium dendrite growth [J].
Han, Wei-Wei ;
Ardhi, Ryanda Enggar Anugrah ;
Liu, Gui-Cheng .
RARE METALS, 2022, 41 (02) :353-355
[19]   Quantifying the Effect of Separator Thickness on Rate Performance in Lithium-Ion Batteries [J].
Horvath, Dominik, V ;
Tian, Ruiyuan ;
Gabbett, Cian ;
Nicolosi, Valeria ;
Coleman, Jonathan N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (03)
[20]   Vapor-induced phase inversion of poly (m-phenylene isophthalamide) modified polyethylene separator for high-performance lithium-ion batteries [J].
Huang, Ziyu ;
Chen, Yifu ;
Han, Qingyue ;
Su, Miaomiao ;
Liu, Yangxi ;
Wang, Suqing ;
Wang, Haihui .
CHEMICAL ENGINEERING JOURNAL, 2022, 429