A Light-Thin Chitosan Nanofiber Separator for High-Performance Lithium-Ion Batteries

被引:6
作者
Song, Yanghui [1 ]
Zhao, Guanglei [1 ]
Zhang, Sihan [1 ]
Xie, Chong [1 ]
Li, Xiaofeng [2 ]
机构
[1] South China Univ Technol, Sch Light Ind & Engn, State Key Lab Pulp & Paper Engn, Guangzhou 510641, Peoples R China
[2] South China Univ Technol, Sch Food Sci & Engn, Guangzhou 510644, Peoples R China
基金
中国国家自然科学基金;
关键词
chitosan; nanofiber; separator; lithium-ion battery; nano-porous structure; RECENT PROGRESS; PORE STRUCTURE; THICKNESS; MEMBRANES; CELLULOSE;
D O I
10.3390/polym15183654
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
With the development of portable devices and wearable devices, there is a higher demand for high-energy density and light lithium-ion batteries (LIBs). The separator is a significant component directly affecting the performance of LIBs. In this paper, a thin and porous chitosan nanofiber separator was successfully fabricated using the simple ethanol displacement method. The thickness of the CME15 separator was about half that of mainstream commercial Celgard2325 separators. Owing to its inherent polarity and high porosity, the obtained CME15 separator achieved a small contact angle (18 & DEG;) and excellent electrolyte wettability (324% uptake). The CME15 separator could maintain excellent thermal dimensional stability at 160 & DEG;C. Furthermore, the CME15 separator-based LIBs exhibited excellent cycling performance after 100 cycles (117 mAh g-1 at 1 C). The present work offers a perspective on applying a chitosan nanofiber separator in light and high-performance lithium-ion batteries (LIBs).
引用
收藏
页数:15
相关论文
共 64 条
[1]   Acid-Scavenging Separators: A Novel Route for Improving Li-Ion Batteries' Durability [J].
Banerjee, Anjan ;
Ziv, Baruch ;
Shilina, Yuliya ;
Luski, Shalom ;
Aurbach, Doron ;
Halalay, Ion C. .
ACS ENERGY LETTERS, 2017, 2 (10) :2388-2393
[2]   Metal organic framework modified poly(vinylidene fluoride-co-hexafluoropropylene) separator membranes to improve lithium-ion battery capacity fading [J].
Barbosa, J. C. ;
Goncalves, R. ;
Valverde, A. ;
Martins, P. M. ;
Petrenko, Viktor I. ;
Marton, Marko ;
Fidalgo-Marijuan, A. ;
de Luis, R. Fernandez ;
Costa, C. M. ;
Lanceros-Mendez, S. .
CHEMICAL ENGINEERING JOURNAL, 2022, 443
[3]   Lithium-ion battery separator membranes based on poly(L-lactic acid) biopolymer [J].
Barbosa, J. C. ;
Reizabal, A. ;
Correia, D. M. ;
Fidalgo-Marijuan, A. ;
Goncalves, R. ;
Silva, M. M. ;
Lanceros-Mendez, S. ;
Costa, C. M. .
MATERIALS TODAY ENERGY, 2020, 18
[4]   Nanofiber Materials for Lithium-Ion Batteries [J].
Cao, Xinwang ;
Ma, Chang ;
Luo, Lei ;
Chen, Lei ;
Cheng, Hui ;
Orenstein, Raphael Simha ;
Zhang, Xiangwu .
ADVANCED FIBER MATERIALS, 2023, 5 (04) :1141-1197
[5]   Nanocellulose toward Advanced Energy Storage Devices: Structure and Electrochemistry [J].
Chen, Chaoji ;
Hu, Liangbing .
ACCOUNTS OF CHEMICAL RESEARCH, 2018, 51 (12) :3154-3165
[6]   Critical Parameters for Evaluating Coin Cells and Pouch Cells of Rechargeable Li-Metal Batteries [J].
Chen, Shuru ;
Niu, Chaojiang ;
Lee, Hongkyung ;
Li, Qiuyan ;
Yu, Lu ;
Xu, Wu ;
Zhang, Ji-Guang ;
Dufek, Eric J. ;
Whittingham, M. Stanley ;
Meng, Shirley ;
Xiao, Jie ;
Liu, Jun .
JOULE, 2019, 3 (04) :1094-1105
[7]   A bacterial cellulose-based separator with tunable pore size for lithium-ion batteries [J].
Cheng, Chen ;
Yang, Rendang ;
Wang, Yang ;
Fu, Danning ;
Sheng, Jie ;
Guo, Xiaohui .
CARBOHYDRATE POLYMERS, 2023, 304
[8]   Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications [J].
Costa, Carlos M. ;
Silva, Maria M. ;
Lanceros-Mendez, S. .
RSC ADVANCES, 2013, 3 (29) :11404-11417
[9]   Cross-linked cellulose/carboxylated polyimide nanofiber separator for lithium-ion battery application [J].
Deng, Jianhui ;
Cao, Dongqing ;
Yang, Xiaoqing ;
Zhang, Guoqing .
CHEMICAL ENGINEERING JOURNAL, 2022, 433
[10]   Effect of temperature on compression behavior of polypropylene separator used for Lithium-ion battery [J].
Ding, Lei ;
Zhang, Chao ;
Wu, Tong ;
Yang, Feng ;
Lan, Fang ;
Cao, Ya ;
Xiang, Ming .
JOURNAL OF POWER SOURCES, 2020, 466