Drug-target interactions prediction based on network topology feature representation embedded deep forest
被引:7
|
作者:
Lian, Majun
论文数: 0引用数: 0
h-index: 0
机构:
East China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R ChinaEast China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
Lian, Majun
[1
]
Wang, Xinjie
论文数: 0引用数: 0
h-index: 0
机构:
East China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
East China Univ Sci & Technol, Sch Informat Sci & Engn, Shanghai 200237, Peoples R ChinaEast China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
Wang, Xinjie
[1
,2
]
Du, Wenli
论文数: 0引用数: 0
h-index: 0
机构:
East China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
East China Univ Sci & Technol, Sch Informat Sci & Engn, Shanghai 200237, Peoples R ChinaEast China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
Du, Wenli
[1
,2
]
机构:
[1] East China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
[2] East China Univ Sci & Technol, Sch Informat Sci & Engn, Shanghai 200237, Peoples R China
Identifying drug-target interactions (DTIs) is instructive in drug design and disease treatment. Existing studies typically used the properties of nodes (drug chemical structure and protein sequence) to con-struct drug and target features while ignoring the influence of network topology information on the pre-diction of DTIs. In this study, a hybrid computation model is proposed to predict DTIs based on the network topological feature representation embedded the deep forest model (NTFRDF). The main idea is to capture the topological differences by learning the low-dimensional feature representation of drugs and targets from the heterogeneous network. In addition, the multi-similarity fusion strategy is proposed to mine hidden useful information in the known DTIs from multi-view to enrich network features of the heterogeneous network. Based on the deep forest framework, the performance of the proposed method is examined on four benchmark datasets. Our experimental results verify that the proposed method is com-petitive compared with some existing DTIs prediction models.& COPY; 2023 Elsevier B.V. All rights reserved.
机构:
Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi, Peoples R China
Univ Chinese Acad Sci, Beijing, Peoples R ChinaChinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi, Peoples R China
Chen, Zhan-Heng
You, Zhu-Hong
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi, Peoples R China
Univ Chinese Acad Sci, Beijing, Peoples R ChinaChinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi, Peoples R China
You, Zhu-Hong
Guo, Zhen-Hao
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi, Peoples R China
Univ Chinese Acad Sci, Beijing, Peoples R ChinaChinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi, Peoples R China
Guo, Zhen-Hao
Yi, Hai-Cheng
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi, Peoples R China
Univ Chinese Acad Sci, Beijing, Peoples R ChinaChinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi, Peoples R China
Yi, Hai-Cheng
Luo, Gong-Xu
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi, Peoples R China
Univ Chinese Acad Sci, Beijing, Peoples R ChinaChinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi, Peoples R China
Luo, Gong-Xu
Wang, Yan-Bin
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Sch Cyber Sci & Technol, Hangzhou, Peoples R ChinaChinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi, Peoples R China
机构:
Shanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, Shanghai 200240, Peoples R ChinaShanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, Shanghai 200240, Peoples R China
Chu, Yanyi
Kaushik, Aman Chandra
论文数: 0引用数: 0
h-index: 0
机构:
Jiangnan Univ, Sch Med, Wuxi, Jiangsu, Peoples R ChinaShanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, Shanghai 200240, Peoples R China
Kaushik, Aman Chandra
Wang, Xiangeng
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, Shanghai 200240, Peoples R ChinaShanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, Shanghai 200240, Peoples R China
Wang, Xiangeng
Wang, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai, Peoples R ChinaShanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, Shanghai 200240, Peoples R China
Wang, Wei
Zhang, Yufang
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, Shanghai 200240, Peoples R ChinaShanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, Shanghai 200240, Peoples R China
Zhang, Yufang
Shan, Xiaoqi
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, Shanghai 200240, Peoples R ChinaShanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, Shanghai 200240, Peoples R China
Shan, Xiaoqi
Salahub, Dennis Russell
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calgary, Dept Chem, Calgary, AB, Canada
Royal Soc Canada, Ottawa, ON, Canada
Amer Assoc Advancement Sci, Washington, DC USAShanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, Shanghai 200240, Peoples R China
Salahub, Dennis Russell
Xiong, Yi
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, Shanghai 200240, Peoples R ChinaShanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, Shanghai 200240, Peoples R China
Xiong, Yi
Wei, Dong-Qing
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, Shanghai 200240, Peoples R ChinaShanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, Shanghai 200240, Peoples R China