Delocalized Lithium Ion Flux by Solid-State Electrolyte Composites Coupled with 3D Porous Nanostructures for Highly Stable Lithium Metal Batteries

被引:20
作者
Lee, Jooyoung [1 ]
Park, Hyunji [1 ]
Hwang, Jieun [1 ]
Noh, Juran [2 ]
Yu, Choongho [1 ,2 ]
机构
[1] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA
关键词
lithium metal; solid-state electrolyte; composite; carbon nanotube; delocalized lithium ion; GEL POLYMER ELECTROLYTE; PVDF-HFP; LI; PERFORMANCE; CATHODE; CONDUCTIVITY; DEGRADATION; MECHANISMS; MEMBRANES; NETWORK;
D O I
10.1021/acsnano.3c04526
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This work investigates the root cause of failure withthe ultimateanode, Li metal, when employing conventional/composite separatorsand/or porous anodes. Then a feasible route of utilizing Li metalis presented. Our operando and microscopy studies have unveiled thatLi(+) flux passing through the conventional separator isnot uniform, resulting in preferential Li plating/stripping. Porousanodes alone are subject to clogging with moderate- or high-loadingcathodes. Here we discovered it is necessary to seek synergy fromour separator and anode pair to deliver delocalized Li+ to the anode and then uniformly plate Li metal over the large surfaceareas of the porous anode. Our polymer composite separator containinga solid-state electrolyte (SE) can provide numerous Li+ passages through the percolated SE and pore networks. Our finiteelement analysis and comparative tests disclosed the synergy betweenthe homogeneous Li+ flux and current density reductionon the anode. Our composite separators have induced compact and uniformLi plating with robust inorganic-rich solid electrolyte interphaselayers. The porous anode decreased the nucleation overpotential andinterfacial contact impedance during Li plating. Full cell tests withLiFePO(4) and Li[Ni0.8Mn0.1Co0.1]O-2 (NMC811) exhibited remarkable cycling behaviors: & SIM;80%capacity retention at the 750th and 235th cycle, respectively. A high-loadingNMC811 (4 mAh cm(-2)) full cell displayed maximumcell-level energy densities of 334 Wh kg(-1) and 783Wh L-1. This work proposes a solution for raisingenergy density by adopting Li metal, which could be a viable optionconsidering only incremental advancement in conventional cathodeslately.
引用
收藏
页码:16020 / 16035
页数:16
相关论文
共 97 条
[51]   Electrochemical performance of electrospun poly(vinylidene fluoride-co-hexafluoropropylene)-based nanocomposite polymer electrolytes incorporating ceramic fillers and room temperature ionic liquid [J].
Raghavan, Prasanth ;
Zhao, Xiaohui ;
Manuel, James ;
Chauhan, Ghanshyam S. ;
Ahn, Jou-Hyeon ;
Ryu, Ho-Suk ;
Ahn, Hyo-Jun ;
Kim, Ki-Won ;
Nah, Changwoon .
ELECTROCHIMICA ACTA, 2010, 55 (04) :1347-1354
[52]   Lithium Batteries with Nearly Maximum Metal Storage [J].
Raji, Abdul-Rahman O. ;
Salvatierra, Rodrigo Villegas ;
Kim, Nam Dong ;
Fan, Xiujun ;
Li, Yilun ;
Silva, Gladys A. L. ;
Sha, Junwei ;
Tour, James M. .
ACS NANO, 2017, 11 (06) :6362-6369
[53]   Highly conductive and electrochemically stable plasticized blend polymer electrolytes based on PVdF-HFP and triblock copolymer PPG-PEG-PPG diamine for Li-ion batteries [J].
Saikia, Diganta ;
Wu, Hao-Yiang ;
Pan, Yu-Chi ;
Lin, Chi-Pin ;
Huang, Kai-Pin ;
Chen, Kan-Nan ;
Fey, George T. K. ;
Kao, Hsien-Ming .
JOURNAL OF POWER SOURCES, 2011, 196 (05) :2826-2834
[54]   High-Performance Cells Containing Lithium Metal Anodes, LiNi0.6Co0.2 Mn0.2O2 (NCM 622) Cathodes, and Fluoroethylene Carbonate-Based Electrolyte Solution with Practical Loading [J].
Salitra, Gregory ;
Markeyich, Elena ;
Afri, Michal ;
Talyosef, Yosef ;
Hartmann, Pascal ;
Kulisch, Joern ;
Sun, Yang-Kook ;
Aurbach, Doron .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (23) :19773-19782
[55]   Performance and cost of materials for lithium-based rechargeable automotive batteries [J].
Schmuch, Richard ;
Wagner, Ralf ;
Horpel, Gerhard ;
Placke, Tobias ;
Winter, Martin .
NATURE ENERGY, 2018, 3 (04) :267-278
[56]  
Scrosati B, 2015, WOODHEAD PUBL SER EN, P1
[57]   A quasi-solid composite separator with high ductility for safe and high-performance lithium-ion batteries [J].
Shi, Xingyi ;
Sun, Qingwei ;
Boateng, Bismark ;
Niu, Yinghua ;
Han, Yidong ;
Lv, Weiqiang ;
He, Weidong .
JOURNAL OF POWER SOURCES, 2019, 414 :225-232
[58]   FTIR studies of PEMA/PVdF-HFP blend polymer electrolyte system incorporated with LiCF3SO3 salt [J].
Sim, L. N. ;
Majid, S. R. ;
Arof, A. K. .
VIBRATIONAL SPECTROSCOPY, 2012, 58 :57-66
[59]   Curvature-directed crystallization of poly(vinylidene difluoride) in nanotube walls [J].
Steinhart, M ;
Senz, S ;
Wehrspohn, RB ;
Gösele, U ;
Wendorff, JH .
MACROMOLECULES, 2003, 36 (10) :3646-3651
[60]   High Li+ transference gel interface between solid-oxide electrolyte and cathode for quasi-solid lithium-ion batteries [J].
Subramani, Ramesh ;
Tseng, Yu-Hsien ;
Lee, Yuh-Lang ;
Chiu, Chi-Cheng ;
Hou, Sheng-Shu ;
Teng, Hsisheng .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (19) :12244-12252