Delocalized Lithium Ion Flux by Solid-State Electrolyte Composites Coupled with 3D Porous Nanostructures for Highly Stable Lithium Metal Batteries

被引:17
作者
Lee, Jooyoung [1 ]
Park, Hyunji [1 ]
Hwang, Jieun [1 ]
Noh, Juran [2 ]
Yu, Choongho [1 ,2 ]
机构
[1] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA
关键词
lithium metal; solid-state electrolyte; composite; carbon nanotube; delocalized lithium ion; GEL POLYMER ELECTROLYTE; PVDF-HFP; LI; PERFORMANCE; CATHODE; DENSITY; ANODES; CONDUCTIVITY; DEGRADATION; MECHANISMS;
D O I
10.1021/acsnano.3c04526
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This work investigates the root cause of failure withthe ultimateanode, Li metal, when employing conventional/composite separatorsand/or porous anodes. Then a feasible route of utilizing Li metalis presented. Our operando and microscopy studies have unveiled thatLi(+) flux passing through the conventional separator isnot uniform, resulting in preferential Li plating/stripping. Porousanodes alone are subject to clogging with moderate- or high-loadingcathodes. Here we discovered it is necessary to seek synergy fromour separator and anode pair to deliver delocalized Li+ to the anode and then uniformly plate Li metal over the large surfaceareas of the porous anode. Our polymer composite separator containinga solid-state electrolyte (SE) can provide numerous Li+ passages through the percolated SE and pore networks. Our finiteelement analysis and comparative tests disclosed the synergy betweenthe homogeneous Li+ flux and current density reductionon the anode. Our composite separators have induced compact and uniformLi plating with robust inorganic-rich solid electrolyte interphaselayers. The porous anode decreased the nucleation overpotential andinterfacial contact impedance during Li plating. Full cell tests withLiFePO(4) and Li[Ni0.8Mn0.1Co0.1]O-2 (NMC811) exhibited remarkable cycling behaviors: & SIM;80%capacity retention at the 750th and 235th cycle, respectively. A high-loadingNMC811 (4 mAh cm(-2)) full cell displayed maximumcell-level energy densities of 334 Wh kg(-1) and 783Wh L-1. This work proposes a solution for raisingenergy density by adopting Li metal, which could be a viable optionconsidering only incremental advancement in conventional cathodeslately.
引用
收藏
页码:16020 / 16035
页数:16
相关论文
共 97 条
  • [51] Electrochemical performance of electrospun poly(vinylidene fluoride-co-hexafluoropropylene)-based nanocomposite polymer electrolytes incorporating ceramic fillers and room temperature ionic liquid
    Raghavan, Prasanth
    Zhao, Xiaohui
    Manuel, James
    Chauhan, Ghanshyam S.
    Ahn, Jou-Hyeon
    Ryu, Ho-Suk
    Ahn, Hyo-Jun
    Kim, Ki-Won
    Nah, Changwoon
    [J]. ELECTROCHIMICA ACTA, 2010, 55 (04) : 1347 - 1354
  • [52] Lithium Batteries with Nearly Maximum Metal Storage
    Raji, Abdul-Rahman O.
    Salvatierra, Rodrigo Villegas
    Kim, Nam Dong
    Fan, Xiujun
    Li, Yilun
    Silva, Gladys A. L.
    Sha, Junwei
    Tour, James M.
    [J]. ACS NANO, 2017, 11 (06) : 6362 - 6369
  • [53] Highly conductive and electrochemically stable plasticized blend polymer electrolytes based on PVdF-HFP and triblock copolymer PPG-PEG-PPG diamine for Li-ion batteries
    Saikia, Diganta
    Wu, Hao-Yiang
    Pan, Yu-Chi
    Lin, Chi-Pin
    Huang, Kai-Pin
    Chen, Kan-Nan
    Fey, George T. K.
    Kao, Hsien-Ming
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (05) : 2826 - 2834
  • [54] High-Performance Cells Containing Lithium Metal Anodes, LiNi0.6Co0.2 Mn0.2O2 (NCM 622) Cathodes, and Fluoroethylene Carbonate-Based Electrolyte Solution with Practical Loading
    Salitra, Gregory
    Markeyich, Elena
    Afri, Michal
    Talyosef, Yosef
    Hartmann, Pascal
    Kulisch, Joern
    Sun, Yang-Kook
    Aurbach, Doron
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (23) : 19773 - 19782
  • [55] Performance and cost of materials for lithium-based rechargeable automotive batteries
    Schmuch, Richard
    Wagner, Ralf
    Horpel, Gerhard
    Placke, Tobias
    Winter, Martin
    [J]. NATURE ENERGY, 2018, 3 (04): : 267 - 278
  • [56] Scrosati B, 2015, WOODHEAD PUBL SER EN, P1
  • [57] A quasi-solid composite separator with high ductility for safe and high-performance lithium-ion batteries
    Shi, Xingyi
    Sun, Qingwei
    Boateng, Bismark
    Niu, Yinghua
    Han, Yidong
    Lv, Weiqiang
    He, Weidong
    [J]. JOURNAL OF POWER SOURCES, 2019, 414 : 225 - 232
  • [58] FTIR studies of PEMA/PVdF-HFP blend polymer electrolyte system incorporated with LiCF3SO3 salt
    Sim, L. N.
    Majid, S. R.
    Arof, A. K.
    [J]. VIBRATIONAL SPECTROSCOPY, 2012, 58 : 57 - 66
  • [59] Curvature-directed crystallization of poly(vinylidene difluoride) in nanotube walls
    Steinhart, M
    Senz, S
    Wehrspohn, RB
    Gösele, U
    Wendorff, JH
    [J]. MACROMOLECULES, 2003, 36 (10) : 3646 - 3651
  • [60] High Li+ transference gel interface between solid-oxide electrolyte and cathode for quasi-solid lithium-ion batteries
    Subramani, Ramesh
    Tseng, Yu-Hsien
    Lee, Yuh-Lang
    Chiu, Chi-Cheng
    Hou, Sheng-Shu
    Teng, Hsisheng
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (19) : 12244 - 12252