Bimetallic MoO3/Ni-N-C Nanoalloys Derived from MOFs for Electrocatalytic Urea Oxidation Reaction

被引:11
作者
Bao, Yanji [1 ]
Chen, Keju [1 ]
Feng, Zhouhang [1 ]
Ru, Haifeng [1 ]
Guo, Mingliang [1 ]
Chen, Delun [1 ]
Li, Xiaobao [2 ]
Tu, Jinchun [1 ]
Ding, Lei [1 ]
Lai, Xiaoyong [3 ]
机构
[1] Hainan Univ, Sch Mat Sci & Engn, Haikou 570228, Peoples R China
[2] Hainan Normal Univ, Key Lab Trop Med Resource Chem Minist Educ, Haikou 571158, Hainan, Peoples R China
[3] Ningxia Univ, Sch Chem & Chem Engn, State Key Lab High Efficiency Utilizat Coal & Gree, Yinchuan 750021, Peoples R China
基金
中国国家自然科学基金;
关键词
electrocatalysts; molybdenum; MoO3; Ni-N-C; local charge distribution; urea oxidationreaction; HYDROGEN EVOLUTION; EFFICIENT; PERFORMANCE; NANOSHEETS; CATALYSTS; ETHANOL;
D O I
10.1021/acsanm.3c01258
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In electrochemical energy storage and conversion systems,ureaoxidation reaction (UOR) can produce hydrogen and mitigate pollutionfrom urea-rich wastewater in a low-energy manner, whereas the developmentof this technique was limited via a lack of economical and cost-effectiveUOR catalysts. Herein, a unique electrocatalyst of MoO3/Ni-N-C was synthesized from a Mo element-incorporated Ni-MOF byheating under an inert atmosphere. The prepared MoO3/Ni-N-Celectrode shows superior activity toward UOR, which only needs a lowpotential of 1.42 V (vs RHE) at 50 mA cm(-2) in 1.0M KOH with 0.5 M urea. The excellent performance for UOR is attributedto the synergistic effect between molybdenum and nickel, the modulationof the electronic structure for the nickel site by MoO3, accelerating the charge transfer, and tuning the reaction interfaceadsorption energy to enhance electrocatalytic activity. This workprovides strategies and directions for exploring other advanced UORelectrode material designs.
引用
收藏
页码:11221 / 11229
页数:9
相关论文
共 50 条
[1]   Catalytic resonance theory: superVolcanoes, catalytic molecular pumps, and oscillatory steady state [J].
Ardagh, M. Alexander ;
Birol, Turan ;
Zhang, Qi ;
Abdelrahman, Omar A. ;
Dauenhauer, Paul J. .
CATALYSIS SCIENCE & TECHNOLOGY, 2019, 9 (18) :5058-5076
[2]   Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis [J].
Chen, Y. X. ;
Lavacchi, A. ;
Miller, H. A. ;
Bevilacqua, M. ;
Filippi, J. ;
Innocenti, M. ;
Marchionni, A. ;
Oberhauser, W. ;
Wang, L. ;
Vizza, F. .
NATURE COMMUNICATIONS, 2014, 5
[3]   Electrochemical Partial Reforming of Ethanol into Ethyl Acetate Using Ultrathin Co3O4 Nanosheets as a Highly Selective Anode Catalyst [J].
Dai, Lei ;
Qin, Qing ;
Zhao, Xiaojing ;
Xu, Chaofa ;
Hu, Chengyi ;
Mo, Shiguang ;
Wang, Yu Olivia ;
Lin, Shuichao ;
Tang, Zichao ;
Zheng, Nanfeng .
ACS CENTRAL SCIENCE, 2016, 2 (08) :538-544
[4]   Enhanced Electrocatalytic Activities by Substitutional Tuning of Nickel-Based Ruddlesden-Popper Catalysts for the Oxidation of Urea and Small Alcohols [J].
Forslund, Robin P. ;
Alexander, Caleb T. ;
Abakumov, Artem M. ;
Johnston, Keith P. ;
Stevenson, Keith J. .
ACS CATALYSIS, 2019, 9 (03) :2664-2673
[5]   Optimizing local charge distribution of metal nodes in bimetallic metal-organic frameworks for efficient urea oxidation reaction [J].
Gao, Zhi ;
Wang, Yue ;
Xu, Li ;
Tao, Qinqin ;
Wang, Xiaodeng ;
Zhou, Zhiyi ;
Luo, Yidong ;
Yu, Jiaying ;
Huang, Yuxing .
CHEMICAL ENGINEERING JOURNAL, 2022, 433
[6]   Investigation of the electrocatalytic mechanisms of urea oxidation reaction on the surface of transition metal oxides [J].
Ge, Jianhua ;
Liu, Zhongfei ;
Guan, Minghui ;
Kuang, Juner ;
Xiao, Yuhua ;
Yang, Yang ;
Tsang, Chi Him ;
Lu, Xiaoying ;
Yang, Chunzhen .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 620 :442-452
[7]   Partial S substitution activates NiMoO4 for efficient and stable electrocatalytic urea oxidation [J].
Han, Wen-Kai ;
Li, Xiao-Peng ;
Lu, Li-Na ;
Ouyang, Ting ;
Xiao, Kang ;
Liu, Zhao-Qing .
CHEMICAL COMMUNICATIONS, 2020, 56 (75) :11038-11041
[8]   Accurate synergy effect of Ni-Sn dual active sites enhances electrocatalytic oxidation of urea for hydrogen evolution in alkaline medium [J].
Ji, Zhijiao ;
Liu, Jia ;
Deng, Yang ;
Zhang, Shouting ;
Zhang, Zhen ;
Du, Peiyao ;
Zhao, Yanli ;
Lu, Xiaoquan .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (29) :14680-14689
[9]   Amorphous Ni(III)-based sulfides as bifunctional water and urea oxidation anode electrocatalysts for hydrogen generation from urea-containing water [J].
Jia, Xin ;
Kang, Hongjun ;
Yang, Xiaoxuan ;
Li, Yunlong ;
Cui, Kai ;
Wu, Xiaohong ;
Qin, Wei ;
Wu, Gang .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 312
[10]   Oxygen-Incorporated NiMoP Nanotube Arrays as Efficient Bifunctional Electrocatalysts For Urea-Assisted Energy-Saving Hydrogen Production in Alkaline Electrolyte [J].
Jiang, Hao ;
Sun, Mingzi ;
Wu, Shuilin ;
Huang, Bolong ;
Lee, Chun-Sing ;
Zhang, Wenjun .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (43)