Integrated interfacial design of covalent organic framework photocatalysts to promote hydrogen evolution from water

被引:83
作者
He, Ting [1 ]
Zhen, Wenlong [2 ]
Chen, Yongzhi [1 ]
Guo, Yuanyuan [3 ]
Li, Zhuoer [1 ,4 ]
Huang, Ning [5 ]
Li, Zhongping [1 ]
Liu, Ruoyang [1 ]
Liu, Yuan [1 ]
Lian, Xu [1 ]
Xue, Can [2 ]
Sum, Tze Chien [3 ]
Chen, Wei [1 ]
Jiang, Donglin [1 ,4 ]
机构
[1] Natl Univ Singapore, Dept Chem, Faulty Sci, 3 Sci Dr 3, Singapore 117543, Singapore
[2] Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[3] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, 21 Nanyang Link, Singapore 637371, Singapore
[4] Joint Sch Natl Univ Singapore & Tianjin Univ, Int Campus Tianjin Univ, Binhai New City 350207, Fuzhou, Peoples R China
[5] Zhejiang Univ, Dept Polymer Sci & Engn, MOE Key Lab Macromol Synth & Functionalisat, Hangzhou 310027, Peoples R China
关键词
ARTIFICIAL PHOTOSYNTHESIS;
D O I
10.1038/s41467-023-35999-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Attempts to develop hydrogen evolution photocatalysts usually result in low efficiency. Here the authors report a photocatalyst system by integrated interfacial design of stable covalent organic frameworks for high performance hydrogen evolution. Attempts to develop photocatalysts for hydrogen production from water usually result in low efficiency. Here we report the finding of photocatalysts by integrated interfacial design of stable covalent organic frameworks. We predesigned and constructed different molecular interfaces by fabricating ordered or amorphous pi skeletons, installing ligating or non-ligating walls and engineering hydrophobic or hydrophilic pores. This systematic interfacial control over electron transfer, active site immobilisation and water transport enables to identify their distinct roles in the photocatalytic process. The frameworks, combined ordered pi skeletons, ligating walls and hydrophilic channels, work under 300-1000 nm with non-noble metal co-catalyst and achieve a hydrogen evolution rate over 11 mmol g(-1) h(-1), a quantum yield of 3.6% at 600 nm and a three-order-of-magnitude-increased turnover frequency of 18.8 h(-1) compared to those obtained with hydrophobic networks. This integrated interfacial design approach is a step towards designing solar-to-chemical energy conversion systems.
引用
收藏
页数:11
相关论文
共 35 条
[1]   Covalent Nitrogen Doping and Compressive Strain in MoS2 by Remote N2 Plasma Exposure [J].
Azcatl, Angelica ;
Qin, Xiaoye ;
Prakash, Abhijith ;
Zhang, Chenxi ;
Cheng, Lanxia ;
Wang, Qingxiao ;
Lu, Ning ;
Kim, Moon J. ;
Kim, Jiyoung ;
Cho, Kyeongjae ;
Addou, Rafik ;
Hinkle, Christopher L. ;
Appenzeller, Joerg ;
Wallace, Robert M. .
NANO LETTERS, 2016, 16 (09) :5437-5443
[2]   H2 Evolution with Covalent Organic Framework Photocatalysts [J].
Banerjee, Tanmay ;
Gottschling, Kerstin ;
Savasci, Goekcen ;
Ochsenfeld, Christian ;
Lotsch, Bettina V. .
ACS ENERGY LETTERS, 2018, 3 (02) :400-409
[3]   Sustained Solar H2 Evolution from a Thiazolo[5,4-d]thiazole-Bridged Covalent Organic Framework and Nickel-Thiolate Cluster in Water [J].
Biswal, Bishnu P. ;
Vignolo-Gonzalez, Hugo A. ;
Banerjee, Tanmay ;
Grunenberg, Lars ;
Savasci, Goekcen ;
Gottschling, Kerstin ;
Nuss, Juergen ;
Ochsenfeld, Christian ;
Lotsc, Bettina V. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (28) :11082-11092
[4]   Rational design of isostructural 2D porphyrin-based covalent organic frameworks for tunable photocatalytic hydrogen evolution [J].
Chen, Rufan ;
Wang, Yang ;
Ma, Yuan ;
Mal, Arindam ;
Gao, Xiao-Ya ;
Gao, Lei ;
Qiao, Lijie ;
Li, Xu-Bing ;
Wu, Li-Zhu ;
Wang, Cheng .
NATURE COMMUNICATIONS, 2021, 12 (01)
[5]   Particulate photocatalysts for overall water splitting [J].
Chen, Shanshan ;
Takata, Tsuyoshi ;
Domen, Kazunari .
NATURE REVIEWS MATERIALS, 2017, 2 (10)
[6]   Encapsulating [Mo3S13]2- clusters in cationic covalent organic frameworks: enhancing stability and recyclability by converting a homogeneous photocatalyst to a heterogeneous photocatalyst [J].
Cheng, Yuan-Jie ;
Wang, Rui ;
Wang, Shan ;
Xi, Xiao-Juan ;
Ma, Lu-Fang ;
Zang, Shuang-Quan .
CHEMICAL COMMUNICATIONS, 2018, 54 (96) :13563-13566
[7]   Covalent Organic Frameworks: Design, Synthesis, and Functions [J].
Geng, Keyu ;
He, Ting ;
Liu, Ruoyang ;
Dalapati, Sasanka ;
Tan, Ke Tian ;
Li, Zhongping ;
Tao, Shanshan ;
Gong, Yifan ;
Jiang, Qiuhong ;
Jiang, Donglin .
CHEMICAL REVIEWS, 2020, 120 (16) :8814-8933
[8]   Rational Design of Covalent Cobaloxime-Covalent Organic Framework Hybrids for Enhanced Photocatalytic Hydrogen Evolution [J].
Gottschling, Kerstin ;
Savasci, Goekcen ;
Vignolo-Gonzalez, Hugo ;
Schmidt, Sandra ;
Mauker, Philipp ;
Banerjee, Tanmay ;
Rovo, Petra ;
Ochsenfeld, Christian ;
Lotsch, Bettina, V .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (28) :12146-12156
[9]   Covalent Organic Frameworks for Heterogeneous Catalysis: Principle, Current Status, and Challenges [J].
Guo, Jia ;
Jiang, Donglin .
ACS CENTRAL SCIENCE, 2020, 6 (06) :869-879
[10]   All sp2 carbon covalent organic frameworks [J].
He, Ting ;
Geng, Keyu ;
Jiang, Donglin .
TRENDS IN CHEMISTRY, 2021, 3 (06) :431-444