Fractional-Order Sliding-Mode Observers for the Estimation of State-of-Charge and State-of-Health of Lithium Batteries

被引:9
|
作者
Zhou, Minghao [1 ]
Wei, Kemeng [1 ]
Wu, Xiaogang [1 ]
Weng, Ling [2 ]
Su, Hongyu [1 ]
Wang, Dong [1 ]
Zhang, Yuanke [1 ]
Li, Jialin [1 ]
机构
[1] Harbin Univ Sci & Technol, Sch Elect & Elect Engn, Harbin 150080, Peoples R China
[2] Harbin Univ Sci & Technol, Sch Mat Sci & Chem Engn, Harbin 150080, Peoples R China
来源
BATTERIES-BASEL | 2023年 / 9卷 / 04期
基金
中国国家自然科学基金;
关键词
sliding-mode observer (SMO); state-of-charge (SoC); state-of-health (SoH); lithium battery; EXTENDED KALMAN FILTER;
D O I
10.3390/batteries9040213
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium batteries are widely used in power storage and new energy vehicles due to their high energy density and long cycle life. The accurate and real-time estimation for the state-of-charge (SoC) and the state-of-health (SoH) of lithium batteries is of great significance to improve battery life, reliability, and utilization efficiency. In this paper, three cascaded fractional-order sliding-mode observers (FOSMOs) are designed for the estimation of SoC by observing the terminal voltage, the polarization voltage, and the open-circuit voltage of a lithium cell, respectively. Furthermore, to calculate the value of the SoH, two FOSMOs are developed to estimate the capacity and internal resistance of the lithium cell. The control signals of the observers are continuous by utilizing fractional-order sliding manifolds without low-pass filters. Compared with the existing sliding-mode observers for SoC and SoH, weaker chattering, faster response, and higher estimation accuracy are obtained in the proposed method. Finally, the experiment tests demonstrate the validity and feasibility of the proposed observer design method.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] State-of-Charge and State-of-Health variable-gain estimation based on tracking sliding mode differentiators for an electric vehicle Lithium-ion battery
    Fornaro, Pedro
    Puleston, Paul
    Battaiotto, Pedro
    JOURNAL OF ENERGY STORAGE, 2023, 65
  • [32] Online State-of-Charge and State-of-Health Estimation of Lithium Battery Based on Equivalent Circuit Model
    Kung, Chung-Chun
    Chang, Shuo-Chieh
    Chen, Ti-Hung
    NEW TRENDS ON SYSTEM SCIENCES AND ENGINEERING, 2015, 276 : 433 - 446
  • [33] Antidisturbance State-of-Charge Estimation for Lithium-Ion Batteries Using Nonlinear Extended State Observers
    Zhang, Shuo
    Wang, Xinghao
    Chen, Zifeng
    Xiao, Dianxun
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025, 11 (01): : 2918 - 2928
  • [34] State-of-Charge Estimation of Lithium-Ion Batteries Based on Fractional-Order Square-Root Unscented Kalman Filter
    Chen, Liping
    Wu, Xiaobo
    Tenreiro Machado, Jose A.
    Lopes, Antonio M.
    Li, Penghua
    Dong, Xueping
    FRACTAL AND FRACTIONAL, 2022, 6 (02)
  • [35] State-of-health diagnosis of lithium-ion batteries using the fractional-order electrochemical impedance model
    Laribi, Slimane
    Arama, Fatima Zohra
    Mammar, Khaled
    Aoun, Nouar
    Ghaitaoui, Touhami
    Hamouda, Messaoud
    MEASUREMENT, 2023, 211
  • [36] Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries
    Ng, Kong Soon
    Moo, Chin-Sien
    Chen, Yi-Ping
    Hsieh, Yao-Ching
    APPLIED ENERGY, 2009, 86 (09) : 1506 - 1511
  • [37] State-of-Charge and State-of-Health Lithium-Ion Batteries' Diagnosis According to Surface Temperature Variation
    El Mejdoubi, Asmae
    Oukaour, Amrane
    Chaoui, Hicham
    Gualous, Hamid
    Sabor, Jalal
    Slamani, Youssef
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (04) : 2391 - 2402
  • [38] A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring
    Weng, Caihao
    Sun, Jing
    Peng, Huei
    JOURNAL OF POWER SOURCES, 2014, 258 : 228 - 237
  • [39] Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles
    Bhangu, BS
    Bentley, P
    Stone, DA
    Bingham, CM
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2005, 54 (03) : 783 - 794