Reduced isometric knee extensor force following anodal transcranial direct current stimulation of the ipsilateral motor cortex

被引:3
|
作者
Savoury, Ryan G. [1 ]
Kibele, Armin [2 ]
Power, Kevin [1 ]
Herat, Nehara [1 ]
Alizadeh, Shahab [1 ]
Behm, David [1 ]
机构
[1] Mem Univ Newfoundland, Sch Human Kinet & Recreat, St John, NF, Canada
[2] Univ Kassel, Inst Sport & Sport Sci, Kassel, Germany
来源
PLOS ONE | 2023年 / 18卷 / 01期
关键词
POSTACTIVATION POTENTIATION; PERCEIVED EXERTION; PREFRONTAL CORTEX; ELBOW FLEXORS; TASK FAILURE; WARM-UP; TDCS; TIME; EXCITABILITY; PERFORMANCE;
D O I
10.1371/journal.pone.0280129
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
BackgroundThe goal of this study was to determine if 10-min of anodal transcranial direct current stimulation (a-tDCS) to the motor cortex (M1) is capable of modulating quadriceps isometric maximal voluntary contraction (MVC) force or fatigue endurance contralateral or ipsilateral to the stimulation site. MethodsIn a randomized, cross-over design, 16 (8 females) individuals underwent two sessions of a-tDCS and two sham tDCS (s-tDCS) sessions targeting the left M1 (all participants were right limb dominant), with testing of either the left (ipsilateral) or right (contralateral) quadriceps. Knee extensor (KE) MVC force was recorded prior to and following the a-tDCS and s-tDCS protocols. Additionally, a repetitive MVC fatiguing protocol (12 MVCs with work-rest ratio of 5:10-s) was completed following each tDCS protocol. ResultsThere was a significant interaction effect for stimulation condition x leg tested x time [F-(1,F-60) = 7.156, p = 0.010, eta p(2) = 0.11], which revealed a significant absolute KE MVC force reduction in the contralateral leg following s-tDCS (p < 0.001, d = 1.2) and in the ipsilateral leg following a-tDCS (p < 0.001, d = 1.09). A significant interaction effect for condition x leg tested [F-(1,F-56) = 8.12, p = 0.006, eta p(2) = 0.13], showed a significantly lower ipsilateral quadriceps (to tDCS) relative MVC force with a-tDCS, versus s-tDCS [t(15) = -3.07, p = 0.016, d = -0.77]. There was no significant difference between the relative contralateral quadriceps (to tDCS) MVC force for a-tDCS and s-tDCS. Although there was an overall significant [F-(1,F-56) = 8.36, p < 0.001] 12.1% force decrease between the first and twelfth MVC repetitions, there were no significant main or interaction effects for fatigue index force. Conclusiona-tDCS may be ineffective at increasing maximal force or endurance and instead may be detrimental to quadriceps force production.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Anodal transcranial direct current stimulation of the motor cortex induces opposite modulation of reciprocal inhibition in wrist extensor and flexor
    Lackmy-Vallee, Alexandra
    Klomjai, Wanalee
    Bussel, Bernard
    Katz, Rose
    Roche, Nicolas
    JOURNAL OF NEUROPHYSIOLOGY, 2014, 112 (06) : 1505 - 1515
  • [2] TRANSCRANIAL DIRECT CURRENT STIMULATION IMPROVES ISOMETRIC TIME TO EXHAUSTION OF THE KNEE EXTENSORS
    Angius, L.
    Pageaux, B.
    Hopker, J.
    Marcora, S. M.
    Mauger, A. R.
    NEUROSCIENCE, 2016, 339 : 363 - 375
  • [3] Anodal transcranial direct current stimulation of motor cortex does not ameliorate spasticity in multiple sclerosis
    Iodice, Rosa
    Dubbioso, Raffaele
    Ruggiero, Lucia
    Santoro, Lucio
    Manganelli, Fiore
    RESTORATIVE NEUROLOGY AND NEUROSCIENCE, 2015, 33 (04) : 487 - 492
  • [4] Expanding the parameter space of anodal transcranial direct current stimulation of the primary motor cortex
    Agboada, Desmond
    Samani, Mohsen Mosayebi
    Jamil, Asif
    Kuo, Min-Fang
    Nitsche, Michael A.
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [5] After-effects of anodal transcranial direct current stimulation on the excitability of the motor cortex in rats
    Koo, Ho
    Kim, Min Sun
    Han, Sang Who
    Paulus, Walter
    Nitche, Michael A.
    Kim, Yun-Hee
    Kim, Hyoung-Ihl
    Ko, Sung-Hwa
    Shin, Yong-Il
    RESTORATIVE NEUROLOGY AND NEUROSCIENCE, 2016, 34 (05) : 859 - 868
  • [6] Proton Magnetic Resonance Spectroscopy of the motor cortex reveals long term GABA change following anodal Transcranial Direct Current Stimulation
    Patel, Harshal Jayeshkumar
    Romanzetti, Sandro
    Pellicano, Antonello
    Nitsche, Michael A.
    Reetz, Kathrin
    Binkofski, Ferdinand
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [7] Anodal Transcranial Direct Current Stimulation of the Motor Cortex Ameliorates Chronic Pain and Reduces Short Intracortical Inhibition
    Antal, Andrea
    Terney, Daniella
    Kuehnl, Stefanie
    Paulus, Walter
    JOURNAL OF PAIN AND SYMPTOM MANAGEMENT, 2010, 39 (05) : 890 - 903
  • [8] Enhancement of pinch force in the lower leg by anodal transcranial direct current stimulation
    Tanaka, Satoshi
    Hanakawa, Takashi
    Honda, Manabu
    Watanabe, Katsumi
    EXPERIMENTAL BRAIN RESEARCH, 2009, 196 (03) : 459 - 465
  • [9] Multisession anodal transcranial direct current stimulation induces motor cortex plasticity enhancement and motor learning generalization in an aging population
    Dumel, Gaelle
    Bourassa, Marie-Eve
    Charlebois-Plante, Camille
    Desjardins, Martine
    Doyon, Julien
    Saint-Amour, Dave
    De Beaumont, Louis
    CLINICAL NEUROPHYSIOLOGY, 2018, 129 (02) : 494 - 502
  • [10] Effects of anodal transcranial direct current stimulation over lower limb primary motor cortex on motor learning in healthy individuals
    Foerster, Aguida
    Dutta, Anirban
    Kuo, Min-Fang
    Paulus, Walter
    Nitsche, Michael A.
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2018, 47 (07) : 779 - 789