STDAN: Deformable Attention Network for Space-Time Video Super-Resolution

被引:9
作者
Wang, Hai [1 ,2 ]
Xiang, Xiaoyu
Tian, Yapeng [3 ]
Yang, Wenming [1 ,2 ]
Liao, Qingmin [1 ,2 ]
机构
[1] Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
[2] Tsinghua Univ, Dept Elect Engn, Shenzhen 518055, Peoples R China
[3] Univ Texas Dallas, Dept Comp Sci, Richardson, TX 75080 USA
基金
中国国家自然科学基金;
关键词
Deformable attention; feature aggregation; feature interpolation; space-time video super-resolution (STVSR); CONVOLUTION;
D O I
10.1109/TNNLS.2023.3243029
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The target of space-time video super-resolution (STVSR) is to increase the spatial-temporal resolution of low-resolution (LR) and low frame rate (LFR) videos. Recent approaches based on deep learning have made significant improvements, but most of them only use two adjacent frames, that is, short-term features, to synthesize the missing frame embedding, which cannot fully explore the information flow of consecutive input LR frames. In addition, existing STVSR models hardly exploit the temporal contexts explicitly to assist high-resolution (HR) frame reconstruction. To address these issues, in this paper, we propose a deformable attention network called STDAN for STVSR. First, we devise a long-short term feature interpolation (LSTFI) module, which is capable of excavating abundant content from more neighboring input frames for the interpolation process through a bidirectional RNN structure. Second, we put forward a spatial-temporal deformable feature aggregation (STDFA) module, in which spatial and temporal contexts in dynamic video frames are adaptively captured and aggregated to enhance SR reconstruction. Experimental results on several datasets demonstrate that our approach outperforms state-of-the-art STVSR methods.
引用
收藏
页码:10606 / 10616
页数:11
相关论文
共 69 条
  • [1] Depth-Aware Video Frame Interpolation
    Bao, Wenbo
    Lai, Wei-Sheng
    Ma, Chao
    Zhang, Xiaoyun
    Gao, Zhiyong
    Yang, Ming-Hsuan
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3698 - 3707
  • [2] MEMC-Net: Motion Estimation and Motion Compensation Driven Neural Network for Video Interpolation and Enhancement
    Bao, Wenbo
    Lai, Wei-Sheng
    Zhang, Xiaoyun
    Gao, Zhiyong
    Yang, Ming-Hsuan
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (03) : 933 - 948
  • [3] Real-time video super-resolution via motion convolution kernel estimation
    Bare, Bahetiyaer
    Yan, Bo
    Ma, Chenxi
    Li, Ke
    [J]. NEUROCOMPUTING, 2019, 367 : 236 - 245
  • [4] Real-Time Video Super-Resolution with Spatio-Temporal Networks and Motion Compensation
    Caballero, Jose
    Ledig, Christian
    Aitken, Andrew
    Acosta, Alejandro
    Totz, Johannes
    Wang, Zehan
    Shi, Wenzhe
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2848 - 2857
  • [5] Carion N, 2020, European conference on computer vision, P213, DOI DOI 10.1007/978-3-030-58452-813
  • [6] BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond
    Chan, Kelvin C. K.
    Wang, Xintao
    Yu, Ke
    Dong, Chao
    Loy, Chen Change
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 4945 - 4954
  • [7] Chan KCK, 2021, AAAI CONF ARTIF INTE, V35, P973
  • [8] AutoFormer: Searching Transformers for Visual Recognition
    Chen, Minghao
    Peng, Houwen
    Fu, Jianlong
    Ling, Haibin
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 12250 - 12260
  • [9] SiamBAN: Target-Aware Tracking With Siamese Box Adaptive Network
    Chen, Zedu
    Zhong, Bineng
    Li, Guorong
    Zhang, Shengping
    Ji, Rongrong
    Tang, Zhenjun
    Li, Xianxian
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) : 5158 - 5173
  • [10] Multiple Video Frame Interpolation via Enhanced Deformable Separable Convolution
    Cheng, Xianhang
    Chen, Zhenzhong
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (10) : 7029 - 7045