Integrated transcriptomic and metabolomic analyses reveal key genes controlling flavonoid biosynthesis in Citrus grandis 'Tomentosa' fruits

被引:16
作者
Fan, Ruiyi [1 ]
Zhu, Congyi [1 ]
Qiu, Diyang [1 ]
Mao, Genlin [1 ]
Mueller-Roeber, Bernd [2 ,3 ,4 ]
Zeng, Jiwu [1 ]
机构
[1] Guangdong Acad Agr Sci, Inst Fruit Tree Res, Key Lab South Subtrop Fruit Biol & Genet Resource, Minist Agr & Rural Affairs,Guangdong Prov Key Lab, Guangzhou 510640, Peoples R China
[2] Univ Potsdam, Inst Biochem & Biol, D-14476 Potsdam, Germany
[3] Max Planck Inst Mol Plant Physiol, D-14476 Potsdam, Germany
[4] Ctr Plant Syst Biol & Biotechnol CPSBB, 139 Ruski Blvd, Plovdiv 4000, Bulgaria
基金
中国国家自然科学基金;
关键词
Citrus grandis ?Tomentosa; Transcriptome; Flavonoids; Traditional Chinese medicine; ANTHOCYANIN BIOSYNTHESIS; ANTIOXIDANT ACTIVITIES; ACCUMULATION; NARINGIN;
D O I
10.1016/j.plaphy.2023.01.050
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
As a well-recognized traditional Chinese medicine (TCM), immature fruits of Citrus grandis 'Tomentosa' (CGT) serve to cure chronic cough in humans. Specialized metabolites including flavonoids may have contribute to this curing effect. Knowledge about the molecular mechanisms underlying flavonoid biosynthesis in 'Tomentosa' fruits will, therefore, support the breeding of varieties with improved medicinal properties. Hence, we profiled the transcriptomes and metabolites of the fruits of two contrasting C. grandis varieties, namely 'Zheng-Mao' ('ZM') used in TCM production, and a locally cultivated pomelo, namely 'Guang-Qing' ('GQ'), at four devel-opmental stages. A total of 39 flavonoids, including 14 flavanone/flavone, 5 isoflavonoids, 12 flavonols, and 6 anthocyanins, were identified, and 16 of which were quantitatively determined in the fruits of the two varieties. We found that 'ZM' fruits contain more flavonoids than 'GQ'. Specifically, rhoifolin levels were significantly higher in 'ZM' than in 'GQ'. We annotated 31,510 genes, including 1,387 previously unknown ones, via tran-scriptome sequencing of 'ZM' and 'GQ.' A total of 646 genes were found to be differentially expressed between 'ZM' and 'GQ' throughout at all four fruit developmental stages, indicating that they are robust expression markers for future breeding programs. Weighted gene co-expression network analysis identified 18 modules. Combined transcriptional and metabolic analysis revealed 25 genes related to flavonoid biosynthesis and 16 transcriptional regulators (MYBs, bHLHs, WD40) that may be involved in the flavonoids biosynthesis in C. grandis 'Tomentosa' fruits.
引用
收藏
页码:210 / 221
页数:12
相关论文
共 50 条
  • [31] Transcriptomic and metabolomic analyses reveal molecular and metabolic regulation of anthocyanin biosynthesis in three varieties of currant
    Wang, Haoyu
    Gang, Huixin
    Chen, Jing
    Liu, Jiale
    Zhang, Xuelin
    Fu, Chunlin
    Shao, Kailin
    Wang, Xueting
    Qin, Dong
    Huo, Junwei
    FOOD RESEARCH INTERNATIONAL, 2024, 196
  • [32] Integrated Metabolomic and Transcriptomic Analysis Reveals Differential Mechanism of Flavonoid Biosynthesis in Two Cultivars of Angelica sinensis
    Zhu, Tiantian
    Zhang, Minghui
    Su, Hongyan
    Li, Meiling
    Wang, Yuanyuan
    Jin, Ling
    Li, Mengfei
    MOLECULES, 2022, 27 (01):
  • [33] Integrated Transcriptomic and Metabolomic Analysis Reveal the Underlying Mechanism of Anthocyanin Biosynthesis in Toona sinensis Leaves
    Xu, Jing
    Fan, Yanru
    Han, Xiaojiao
    Pan, Huanhuan
    Dai, Jianhua
    Wei, Yi
    Zhuo, Renying
    Liu, Jun
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (20)
  • [34] Transcriptomic and metabolomic analyses reveal the mechanism of cold chain breaks accelerate postharvest kiwifruit ripening and flavonoid loss
    Yang, Haiying
    Li, Yiyang
    Zhang, Shikai
    Ding, Ke
    Wang, Rongrong
    Shan, Yang
    Ding, Shenghua
    SCIENTIA HORTICULTURAE, 2025, 341
  • [35] Integrated metabolomic and transcriptomic analyses reveal that bagging delays ripening of 'Ruidu Kemei' grape berries
    Ma, Yuying
    Gao, Zhen
    Du, Wensheng
    Xie, Fei
    Ren, Guikuan
    Tang, Meiling
    Zheng, Qiuling
    Kang, Hui
    Du, Yuanpeng
    SCIENTIA HORTICULTURAE, 2023, 317
  • [36] Integrated transcriptomic and metabolomic analyses reveal the effect of mycorrhizal colonization on trifoliate orange root hair
    Hu, Cenghong
    Li, Hao
    Tong, Cuiling
    Zhang, Dejian
    Lu, Yunmei
    SCIENTIA HORTICULTURAE, 2024, 336
  • [37] Decoding anthocyanin biosynthesis regulation in Asparagus officinalis peel coloration: Insights from integrated metabolomic and transcriptomic analyses
    Ying, Jiali
    Wen, Shuangshuang
    Cai, Yunfei
    Ye, Youju
    Li, Lebin
    Qian, Renjuan
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2024, 215
  • [38] Integrated transcriptomic and metabolomic analyses reveal the molecular mechanism of flower color differentiation in Orychophragmus violaceus
    Shi, Yubin
    Wang, Zixuan
    Yan, Zhuangzhuang
    Liu, Jianfeng
    Zhang, Jun
    Liu, Guixia
    FRONTIERS IN PLANT SCIENCE, 2025, 16
  • [39] Metabolomic and transcriptomic analyses reveal the effects of self- and hetero-grafting on anthocyanin biosynthesis in grapevine
    Zhong, Haixia
    Liu, Zhongjie
    Zhang, Fuchun
    Zhou, Xiaoming
    Sun, Xiaoxia
    Li, Yongyao
    Liu, Wenwen
    Xiao, Hua
    Wang, Nan
    Lu, Hong
    Pan, Mingqi
    Wu, Xinyu
    Zhou, Yongfeng
    HORTICULTURE RESEARCH, 2022, 9
  • [40] Comparative transcriptomic and metabolomic analyses of carotenoid biosynthesis reveal the basis of white petal color in Brassica napus
    Jia, Ledong
    Wang, Junsheng
    Wang, Rui
    Duan, Mouzheng
    Qiao, Cailin
    Chen, Xue
    Ma, Guoqiang
    Zhou, Xintong
    Zhu, Meichen
    Jing, Fuyu
    Zhang, Shengsen
    Qu, Cunmin
    Li, Jiana
    PLANTA, 2021, 253 (01)