Brain-inspired STA for parameter estimation of fractional-order memristor-based chaotic systems

被引:3
|
作者
Huang, Zhaoke [1 ,2 ]
Yang, Chunhua [1 ]
Zhou, Xiaojun [1 ,2 ]
Gui, Weihua [1 ]
Huang, Tingwen [3 ]
机构
[1] Cent South Univ, Sch Automat, Changsha 410083, Hunan, Peoples R China
[2] Peng Cheng Lab, Shenzhen 518000, Guangdong, Peoples R China
[3] Texas A&M Univ Qatar, Doha 23874, Qatar
基金
中国国家自然科学基金;
关键词
Parameter estimation; Fractional-order chaotic systems; Memristor; State transition algorithm; SYNCHRONIZATION; OPTIMIZATION; ALGORITHM;
D O I
10.1007/s10489-022-04435-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
It is very important to estimate the unknown parameters of the fractional-order memristor-based chaotic systems (FOMCSs). In this study, a brain-inspired state transition algorithm (BISTA) is proposed to estimate the parameters of the FOMCSs. In order to generate a better initial population, a novel initialization approach based on opposition-based learning is presented. To balance the global search and local search, and accelerate the convergence speed, the mutual learning and selective learning are proposed in the optimization process. The performance of the proposed algorithm is comprehensively evaluated on two typical FOMCSs. The simulation results and statistical analysis have demonstrated the effectiveness of the proposed algorithm. For the fractional-order memristor-based Lorenz system, the proposed method can increase the estimated value of parameters by at least one order of magnitude compared with the other methods.
引用
收藏
页码:18653 / 18665
页数:13
相关论文
共 50 条
  • [1] Brain-inspired STA for parameter estimation of fractional-order memristor-based chaotic systems
    Zhaoke Huang
    Chunhua Yang
    Xiaojun Zhou
    Weihua Gui
    Tingwen Huang
    Applied Intelligence, 2023, 53 : 18653 - 18665
  • [2] Parameter estimation of unknown fractional-order memristor-based chaotic systems by a hybrid artificial bee colony algorithm combined with differential evolution
    Gu, Wenjuan
    Yu, Yongguang
    Hu, Wei
    NONLINEAR DYNAMICS, 2016, 84 (02) : 779 - 795
  • [3] On the simplest fractional-order memristor-based chaotic system
    Cafagna, Donato
    Grassi, Giuseppe
    NONLINEAR DYNAMICS, 2012, 70 (02) : 1185 - 1197
  • [4] Parameter estimation of unknown fractional-order memristor-based chaotic systems by a hybrid artificial bee colony algorithm combined with differential evolution
    Wenjuan Gu
    Yongguang Yu
    Wei Hu
    Nonlinear Dynamics, 2016, 84 : 779 - 795
  • [5] On the simplest fractional-order memristor-based chaotic system
    Donato Cafagna
    Giuseppe Grassi
    Nonlinear Dynamics, 2012, 70 : 1185 - 1197
  • [6] Fractional-order memristor-based chaotic jerk system with no equilibrium point and its fractional-order backstepping control
    Prakash, Pankaj
    Singh, Jay Prakash
    Roy, B. K.
    IFAC PAPERSONLINE, 2018, 51 (01): : 1 - 6
  • [7] Robust stability of fractional-order memristor-based Hopfield neural networks with parameter disturbances
    Liu, Shuxin
    Yu, Yongguang
    Zhang, Shuo
    Zhang, Yuting
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 509 : 845 - 854
  • [8] Synchronization of Fractional-Order Memristor-Based Chaotic System via Adaptive Control
    丁大为
    张亚琴
    王年
    JournalofDonghuaUniversity(EnglishEdition), 2017, 34 (05) : 653 - 660
  • [9] Parameter estimation for fractional-order chaotic systems by improved bird swarm optimization algorithm
    Zhang, Pei
    Yang, Renyu
    Yang, Renhuan
    Ren, Gong
    Yang, Xiuzeng
    Xu, Chuangbiao
    Xu, Baoguo
    Zhang, Huatao
    Cai, Yanning
    Lu, Yaosheng
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2019, 30 (11):
  • [10] A novel memristor-based chaotic system with fractional order
    Donato, Cafagna
    Giuseppe, Grassi
    2014 INTERNATIONAL CONFERENCE ON FRACTIONAL DIFFERENTIATION AND ITS APPLICATIONS (ICFDA), 2014,