A numerical-analytical study to determine a suitable distribution of plies in sandwich structures subjected to high-velocity impact

被引:3
|
作者
Alonso, L. [1 ]
Solis, A. [2 ]
Garcia-Castillo, S. K. [3 ]
机构
[1] Rey Juan Carlos Univ, Dept Chem Technol Energy & Mech, C-Tulipan S-N, Mostoles 28933, Spain
[2] Univ Cadiz, Dept Mech Engn & Ind Design, Avd Univ Cadiz 10, Puerto Real 11519, Cadiz, Spain
[3] Univ Carlos III Madrid, Dept Continuum Mech & Struct Anal, Avda Univ 30, Madrid 28911, Spain
关键词
Energy-absorption; Foam; Analytical modelling; Numerical modelling; High-velocity impact; PROGRESSIVE DAMAGE; FACESHEET THICKNESS; CRACK-PROPAGATION; WOVEN COMPOSITES; WAVE-PROPAGATION; MODEL; BEHAVIOR; CORE; PERFORATION; PANELS;
D O I
10.1016/j.compstruct.2022.116645
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This work presents a study that was undertaken to find the configuration that corresponds to the highest ballistic limit for composite sandwich structures made of glass fibre-reinforced polymer (GFRP) sandwich skins and a crushable foam. To this end, a new three-dimensional finite element (FE) model was implemented. The model accounts for the constitutive response of the GFRP sandwich skins and the crushable foam by means of two subroutines. A previously developed analytical model was used to support and complete the results of the FE model. Experimental data were also used to validate both models in the vicinity of the ballistic limit for the neutral configuration (same number of plies on the front and rear face skins). Thus, the most appropriate configuration to improve the ballistic limit for a structure with the same material (same number of plies) was obtained by testing different distributions of laminae. The ballistic limit was then estimated for all the possible configurations and the energy-absorption mechanisms were analysed to reveal new insights into the behaviour of these structures when the neutral configuration is varied. In addition, the damaged areas of the specimens were compared between the experiments and the model. As a result, the most suitable configuration turned out to be associated with thicker rear face skins, which produce higher ballistic limits. The largest fraction of the energy was absorbed by the out-of-plane mechanisms, this behaviour being maintained in all the configurations. Experimental observations established that the damaged area of the front face skin was smaller than the damage produced in the rear face skin and that bending effects were notable in the latter. The affected areas were proved to have a round shape, presenting the largest size in the vicinity of the ballistic limit.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] An analytical study of the plasticity of sandwich honeycomb panels subjected to low-velocity impact
    Sun, Mengqiart
    Wowk, Diane
    Mechefske, Christopher
    Kim, Il Yong
    COMPOSITES PART B-ENGINEERING, 2019, 168 : 121 - 128
  • [22] Analytical models for the perforation of thick and thin thickness woven laminates subjected to high-velocity impact
    Alonso, Luis
    Navarro, Carlos
    Garcia-Castillo, Shirley K.
    COMPOSITES PART B-ENGINEERING, 2018, 143 : 292 - 300
  • [23] Analytical and numerical modelling of high-velocity impact on multilayer alumina/aramid fiber composite ballistic shields: Improvement in modelling approaches
    Gregori, Davide
    Scazzosi, Riccardo
    Nunes, Stephanie Goncalves
    Amico, Sandro Campos
    Giglio, Marco
    Manes, Andrea
    COMPOSITES PART B-ENGINEERING, 2020, 187
  • [24] High-velocity impact response of metallic sandwich structures with PVC foam core
    Ren, Peng
    Tao, Qiangqiang
    Yin, Liangliang
    Ma, Yijiang
    Wu, Jie
    Zhao, Wei
    Mu, Zhongcheng
    Guo, Zitao
    Zhao, Zhe
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2020, 144
  • [25] High-velocity impact loading in honeycomb sandwich panels reinforced with polymer foam: a numerical approach study
    Roudbeneh, Fatemeh Hassanpour
    Liaghat, Gholamhossein
    Sabouri, Hadi
    Hadavinia, Homayoun
    IRANIAN POLYMER JOURNAL, 2020, 29 (08) : 707 - 721
  • [26] Experimental study on the high-velocity impact behavior of sandwich structures with an emphasis on the layering effects of foam core
    Abbasi, Mohammad
    Nia, Ali Alavi
    Abolfathi, Mostafa
    JOURNAL OF SANDWICH STRUCTURES & MATERIALS, 2021, 23 (01) : 3 - 22
  • [27] High-velocity Impact Responses of Composite Sandwich Panels with Honeycomb Core by Using Experimental and Numerical Methods
    Bilgin, Mustafa
    Usta, Fatih
    Turkmen, Halit S.
    Yolum, Ugur
    2023 10TH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN AIR AND SPACE TECHNOLOGIES, RAST, 2023,
  • [28] High-velocity impact behaviour of curved GFRP composites for rail vehicles: Experimental and numerical study
    Yang, Chengxing
    Gao, Ying
    Guo, Weinian
    Yang, Yuhui
    Xu, Ping
    Alqahtani, Mohammed S.
    POLYMER TESTING, 2022, 116
  • [29] Numerical study of high-velocity impact on aeronautic carbon composites
    Arruda, M. R. T.
    Ribeiro, F.
    Gomes, M.
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2024,
  • [30] Experimental study on stress attenuation in aluminum foam core sandwich panels in high-velocity impact
    Liang, Xiaolong
    Luo, Hongjie
    Mu, Yongliang
    Wu, Linli
    Lin, Hao
    MATERIALS LETTERS, 2017, 203 : 100 - 102