The polynomial robust knapsack problem

被引:10
作者
Baldo, Alessandro [1 ]
Boffa, Matteo [2 ]
Cascioli, Lorenzo [1 ]
Fadda, Edoardo [1 ,3 ]
Lanza, Chiara [1 ]
Ravera, Arianna [1 ]
机构
[1] ISIRES, Turin, Italy
[2] Politecn Torino, Dept Elect & Telecommun, Turin, Italy
[3] Politecn Torino, Dept Math Sci Giuseppe Luigi Lagrange, Turin, Italy
关键词
Heuristics; Robust knapsack problem; Genetic algorithm; Machine learning; EXACT ALGORITHMS; OPTIMIZATION; MAX;
D O I
10.1016/j.ejor.2022.06.029
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper introduces a new optimization problem, namely the Polynomial Robust Knapsack Problem. It generalises the Robust Knapsack formulation to encompass possible relations between subsets of items having every possible cardinality. This allows to better describe the utility function for the decision maker, at the price of increasing the complexity of the problem. Thus, in order to solve realistic instances in a reasonable amount of time, two heuristics are proposed. The first one applies machine learning tech-niques in order to quickly select the majority of the items, while the second makes use of genetic algo-rithms to solve the problem. A set of simulation examples is finally presented to show the effectiveness of the proposed approaches.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:1424 / 1434
页数:11
相关论文
共 23 条
[1]   Approximation of min-max and min-max regret versions of some combinatorial optimization problems [J].
Aissi, Hassene ;
Bazgan, Cristina ;
Vanderpooten, Daniel .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 179 (02) :281-290
[2]  
Amini A., 2016, COMP HEURISTIC MACHI, DOI [10.1109/MeMeA.2016.7533763, DOI 10.1109/MEMEA.2016.7533763]
[3]   Robust solutions of Linear Programming problems contaminated with uncertain data [J].
Ben-Tal, A ;
Nemirovski, A .
MATHEMATICAL PROGRAMMING, 2000, 88 (03) :411-424
[4]   The price of robustness [J].
Bertsimas, D ;
Sim, M .
OPERATIONS RESEARCH, 2004, 52 (01) :35-53
[5]   Linear programming for the 0-1 quadratic knapsack problem [J].
Billionnet, A ;
Calmels, F .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1996, 92 (02) :310-325
[6]   A new upper bound for the 0-1 quadratic knapsack problem [J].
Billionnet, A ;
Faye, A ;
Soutif, É .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1999, 112 (03) :664-672
[7]  
Chaillou P., 2006, COMBINATORIAL OPTIMI, V1403, P225, DOI [10.1007/BFb0083467, DOI 10.1007/BFB0083467]
[8]   APPLICATION OF THE KNAPSACK MODEL FOR BUDGETING [J].
EILON, S .
OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 1987, 15 (06) :489-494
[9]  
GALLO G, 1980, MATH PROGRAM STUD, V12, P132, DOI 10.1007/BFb0120892
[10]  
Glover F., 2002, Combinatorial and Global Optimization, P111, DOI DOI 10.1142/9789812778215_0008