K-Ca Synergetic Modified g-C3N4 for Efficient Photocatalytic NO Removal with Low-NO2-Emission

被引:4
|
作者
Lu, Zhenzhen [1 ]
Li, Siqi [1 ,2 ]
Xiao, Jiyue [1 ]
机构
[1] Chongqing Jiaotong Univ, Sch Civil Engn, Chongqing 400074, Peoples R China
[2] Changan Univ, Sch Highway, Xian 710064, Peoples R China
关键词
K-Ca co-doping; Synergistic effect; NO2; removal; NOX toxicity; GRAPHITIC CARBON NITRIDE; NO+O-2 COADSORPTION; DOPED G-C3N4; PERFORMANCE; DEGRADATION; ADSORPTION; COMPOSITE; OXIDE; TIO2; NANOCOMPOSITES;
D O I
10.1007/s10562-022-04193-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, we discuss the synergy of K-Ca in improving the removal efficiency of NO-NO2 by g-C3N4 in detail. The K-Ca modified g-C3N4 (GK(X)C(Y), GKC-Z) with varied K/Ca ratio and different dosage of K/Ca were prepared by a one-step thermal polymerization, and the pure g-C3N4 and K/Ca single modified g-C3N4 (GK-X, GC-Y) were taken as control index. The toxicity of NOX was adopt to evaluate the photocatalytic activity, and XRD, SEM, TEM, FT-IR, XPS, UV-Vis, PL and In-situ DRIFTS were taken to characterize the crystal phase, micromorphology, optical characteristics and NO degradation pathway. The results demonstrate that the by-product CaCO3 produced from calcium salt can improve the chemisorption ratio of g-C3N4 to NO-NO2. K-Ca co-doping can synergistically enhance the oxidation activity of g-C3N4 to NO-NO2. From the results, the sample GK(0.1)C(0.4) was endowed with the best NOx degradation activity through K-Ca co-doping which can dramatically decrease the toxicity of NOX from 1 to 0.706 within 30 min. [GRAPHICS]
引用
收藏
页码:2558 / 2570
页数:13
相关论文
共 50 条
  • [31] Sunlight removal of diclofenac using g-C3N4, g-C3N4/Cl, g-C3N4/Nb2O5 and g-C3N4/TiO2 photocatalysts
    Batista, Jose Andre Ferreira
    Mendes, Julia
    Moretto, Wesley Escouto
    Quadro, Maurizio Silveira
    dos Santos, Joao Henrique Zimnoch
    de Escobar, Cicero Coelho
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (03):
  • [32] Photocatalytic Activity of TiO2/g-C3N4 Nanocomposites for Removal of Monochlorophenols from Water
    Kobkeatthawin, Thawanrat
    Chaveanghong, Suwilai
    Trakulmututa, Jirawat
    Amornsakchai, Taweechai
    Kajitvichyanukul, Puangrat
    Smith, Siwaporn Meejoo
    NANOMATERIALS, 2022, 12 (16)
  • [33] Synergistic removal of naproxen through photocatalytic activation of peroxymonosulfate using g-C3N4
    Zebiri, Zakarya
    Debbache, Nadra
    Sehili, Tahar
    JOURNAL OF MOLECULAR STRUCTURE, 2025, 1331
  • [34] The efficient removal towards tetracycline via photocatalytic persulfate activation using the heterostructured UiO-66-NH2-CA-Cu/g-C3N4 composite
    Fan, Yan
    Wang, Lei
    Sun, Xueqin
    Li, Cuili
    Liu, Jiacheng
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (24)
  • [35] Mesoporous g-C3N4 Nanosheets: Synthesis, Superior Adsorption Capacity and Photocatalytic Activity
    Li, Dong-Feng
    Huang, Wei-Qing
    Zou, Lan-Rong
    Pan, Anlian
    Huang, Gui-Fang
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2018, 18 (08) : 5502 - 5510
  • [36] TiO2 modified g-C3N4 with enhanced photocatalytic CO2 reduction performance
    Wang, Huiqin
    Li, Hongda
    Chen, Zhuowen
    Li, Jinze
    Li, Xin
    Huo, Pengwei
    Wang, Qian
    SOLID STATE SCIENCES, 2020, 100
  • [37] Indirect Z-scheme TiO2/BC/g-C3N4 for efficient photocatalytic reduction of Cr(VI) in aqueous solution
    Chen, Mingliang
    Wang, Guanghui
    Dai, Jialing
    Li, Haifeng
    Deng, Nansheng
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2024, 99 (02) : 415 - 425
  • [38] Effect of processing temperature on structure and photocatalytic properties of g-C3N4
    Papailias, I.
    Giannakopoulou, T.
    Todorova, N.
    Demotikali, D.
    Vaimakis, T.
    Trapalis, C.
    APPLIED SURFACE SCIENCE, 2015, 358 : 278 - 286
  • [39] Efficient Photocatalytic Degradation of Aqueous Atrazine over Graphene-Promoted g-C3N4 Nanosheets
    Altendji, Khaoula
    Hamoudi, Safia
    CATALYSTS, 2023, 13 (09)
  • [40] g-C3N4/BiYO3 Composite for Photocatalytic Hydrogen Evolution
    Ma, Rujun
    Dong, Lihui
    Li, Bin
    Su, Tongming
    Luo, Xuan
    Qin, Zuzeng
    Ji, Hongbing
    CHEMISTRYSELECT, 2018, 3 (21): : 5891 - 5899