Convergence of solutions of a system of recurrence equations

被引:4
作者
Allam, Asma [1 ,2 ]
Halim, Yacine [1 ,3 ]
Khelifa, Amira [3 ]
机构
[1] Abdelhafid Boussouf Univ Ctr, RP 26 Mila, Mila 43000, Algeria
[2] ENS Assia Djebbar, Appl Math & Didact Lab, Constantine 25016, Algeria
[3] Mohamed Seddik Ben Yahia Univ, LMAM Lab, BP 98, Jijel 18000, Algeria
关键词
System of recurrence equations; Two-periodic solution; Monotonicity of the sequences; Convergence; DIFFERENCE EQUATION; BEHAVIOR; TERMS;
D O I
10.1007/s12190-022-01807-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the convergence of positive solutions to the close-to-symmetric system of higher-order difference equations x(n+ 1) = x(n)-(2k+1)/1 + y(n- k), y(n+1) = y(n)-(2k+1)/1 + x(n-k), n, k is an element of N-0, (1) where the initials values x-( 2k+1), x-2k,..., x(0), y-( 2k+1), y-2k,..., y(0) are positive real numbers. The obtained results, considerably extending some recent results in the literature.
引用
收藏
页码:1659 / 1677
页数:19
相关论文
共 30 条
[1]   Forbidden sets and stability in some rational difference equations [J].
Abo-Zeid, R. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2018, 24 (02) :220-239
[2]   Global asymptotic behavior of a two-dimensional difference equation modelling competition [J].
Clark, D ;
Kulenovic, MRS ;
Selgrade, JF .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (07) :1765-1776
[3]  
Elsayed EM, 2015, HACET J MATH STAT, V44, P1361
[4]  
Elsayed E. M., 2015, [Proceedings of the Jangjeon Mathematical Society, Proceedings of the Jangjeon Mathematical Society(장전수학회 논문집)], V18, P353
[5]   Solutions of rational difference systems of order two [J].
Elsayed, E. M. .
MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (3-4) :378-384
[6]  
Gibbons C., 2000, MATH SCI RES HOT LIN, V4, P1
[7]  
Grove E. A., 2000, Commun. Appl. Nonlinear Anal., V7, P33, DOI DOI 10.1016/j.amc.2009.05.044
[8]  
Halim Y., 2016, MATH SCI LETT, V5, P79, DOI DOI 10.18576/MSL/050111
[9]  
Halim Y., 2017, ELECT J MATH ANAL AP, V5, P166
[10]  
Halim Y., 2015, Electron. J. Math. Anal. Appl, V3, P204