CRetinex: A Progressive Color-Shift Aware Retinex Model for Low-Light Image Enhancement

被引:17
作者
Xu, Han [1 ]
Zhang, Hao [2 ]
Yi, Xunpeng [2 ]
Ma, Jiayi [2 ]
机构
[1] Southeast Univ, Sch Automat, Nanjing 210096, Peoples R China
[2] Wuhan Univ, Elect Informat Sch, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Low-light image enhancement; Retinex model; Color shift; Image decomposition; NETWORK; PERFORMANCE;
D O I
10.1007/s11263-024-02065-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Low-light environments introduce various complex degradations into captured images. Retinex-based methods have demonstrated effective enhancement performance by decomposing an image into illumination and reflectance, allowing for selective adjustment and removal of degradations. However, different types of pollutions in reflectance are often treated together. The absence of explicit distinction and definition of various pollution types results in residual pollutions in the results. Typically, the color shift, which is generally spatially invariant, differs from other spatially variant pollution and proves challenging to eliminate with denoising methods. The remaining color shift compromises color constancy both theoretically and in practice. In this paper, we consider different manifestations of degradations and further decompose them. We propose a color-shift aware Retinex model, termed as CRetinex, which decomposes an image into reflectance, color shift, and illumination. Specific networks are designed to remove spatially variant pollution, correct color shift, and adjust illumination separately. Comparative experiments with the state-of-the-art demonstrate the qualitative and quantitative superiority of our approach. Furthermore, extensive experiments on multiple datasets, including real and synthetic images, along with extended validation, confirm the effectiveness of color-shift aware decomposition and the generalization of CRetinex over a wide range of low-light levels.
引用
收藏
页码:3610 / 3632
页数:23
相关论文
共 46 条
[1]  
Banik P. P., 2018, P INT C EL INF COMM, P1
[2]   Brain-like retinex: A biologically plausible retinex algorithm for low light image enhancement [J].
Cai, Rongtai ;
Chen, Zekun .
PATTERN RECOGNITION, 2023, 136
[3]   Learning to See in the Dark [J].
Chen, Chen ;
Chen, Qifeng ;
Xu, Jia ;
Koltun, Vladlen .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :3291-3300
[4]   Image denoising with block-matching and 3D filtering [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IMAGE PROCESSING: ALGORITHMS AND SYSTEMS, NEURAL NETWORKS, AND MACHINE LEARNING, 2006, 6064
[5]   A weighted variational model for simultaneous reflectance and illumination estimation [J].
Fu, Xueyang ;
Zeng, Delu ;
Huang, Yue ;
Zhang, Xiao-Ping ;
Ding, Xinghao .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :2782-2790
[6]   Evaluation of Interest Point Detectors and Feature Descriptors for Visual Tracking [J].
Gauglitz, Steffen ;
Hoellerer, Tobias ;
Turk, Matthew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2011, 94 (03) :335-360
[7]   Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement [J].
Guo, Chunle ;
Li, Chongyi ;
Guo, Jichang ;
Loy, Chen Change ;
Hou, Junhui ;
Kwong, Sam ;
Cong, Runmin .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :1777-1786
[8]   Low-light Image Enhancement via Breaking Down the Darkness [J].
Guo, Xiaojie ;
Hu, Qiming .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (01) :48-66
[9]   LIME: Low-Light Image Enhancement via Illumination Map Estimation [J].
Guo, Xiaojie ;
Li, Yu ;
Ling, Haibin .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (02) :982-993
[10]   A non-reference image fusion metric based on mutual information of image features [J].
Haghighat, Mohammad Bagher Akbari ;
Aghagolzadeh, Ali ;
Seyedarabi, Hadi .
COMPUTERS & ELECTRICAL ENGINEERING, 2011, 37 (05) :744-756