共 50 条
g-C3N4 quantum dots decorated on urchin-like TiO2 nanostructures for the photoelectrochemical water splitting
被引:5
|作者:
Mirjamali, Fatemeh
[1
]
Samadi, Morasae
[1
]
Moradlou, Omran
[2
]
Zirak, Mohammad
[3
]
机构:
[1] Alzahra Univ, Fac Chem, Dept Phys Chem & Nanochem, Tehran, Iran
[2] Alzahra Univ, Fac Chem, Dept Analyt Chem, Tehran, Iran
[3] Hakim Sabzevari Univ, Fac Sci, Dept Phys, Sabzevar, Iran
关键词:
ENHANCEMENT;
GENERATION;
NANOSHEETS;
D O I:
10.1007/s10853-024-09501-y
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
This work employs a straightforward, simple and low-cost method to grow g-C3N4 quantum dots (QDs) on a distinctive morphology of urchin-like TiO2 (u-TiO2) nanostructures. u-TiO2 on Ti foil was prepared by the hydrothermal method under the optimized experimental parameters, including hydrothermal time and temperature. Then, for the activation of u-TiO2 under visible light irradiation, g-C3N4 quantum dots (g-C3N4 QDs) were decorated on u-TiO2 by combining a wet pre-coating and subsequent thermal evaporation procedure. The experimental parameters of the process were examined to determine the optimized conditions for the highest photocurrent density (J(ph)) in a photoelectrochemical (PEC) cell. g-C3N4 QDs were elucidated by transmission electron microscopy (TEM) and diffuse reflectance spectroscopy (DRS). HRTEM results revealed a uniform distribution of anchored g-C3N4 QDs on the surface of u-TiO2 with a mean size of about 10 nm. Optimized decoration of g-C3N4 QDs on the u-TiO2 dramatically enhanced J(ph) under simulated sunlight irradiation from 0.06 mA/cm(2) for pristine u-TiO2 up to 0.12 mA/cm(2) for TiO2/g-C(3)N(4)QDs photoanodes under the biased potential of 0.5 V versus Ag/AgCl. Based on the results, the type-II heterostructure of u-TiO2/g-C3N4 facilitates electron-hole separation and charge carrier transfer, thereby improving the PEC performance of the proposed photoanode.
引用
收藏
页码:4483 / 4497
页数:15
相关论文