On the structure and classification of Bernstein algebras

被引:0
作者
Militaru, G. [1 ,2 ]
机构
[1] Univ Bucharest, Fac Math & Comp Sci, Str Acad 14, RO-010014 Bucharest 1, Romania
[2] ISEE, Bucharest 014700, Romania
关键词
Non-associative algebra; Bernstein algebra; automorphisms group; STATIONARITY;
D O I
10.1142/S0219498825501774
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Linear algebra tools are used to give a new approach to the open problem of the classification of Bernstein algebras. We prove that any Bernstein algebra (A, omega) is isomorphic to a semidirect product N CC(<middle dot>, Omega) k associated to a commutative algebra (N, <middle dot>) such that (x(2))(2) = 0, for all x is an element of N and an idempotent endomorphism Omega = Omega(2) is an element of End(k)(N) of N satisfying two compatibility conditions. The set of types of (1 + |I|) -dimensional Bernstein algebras is parametrized by an explicitly constructed classified object. The automorphisms group of any Bernstein algebra is described as a subgroup of the canonical semidirect product of groups (N, +) ix GL(k)(N).
引用
收藏
页数:16
相关论文
共 30 条
  • [1] Extending structures, Galois groups and supersolvable associative algebras
    Agore, A. L.
    Militaru, G.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2016, 181 (01): : 1 - 33
  • [2] The global extension problem, crossed products and co-flag non-commutative Poisson algebras
    Agore, A. L.
    Militaru, G.
    [J]. JOURNAL OF ALGEBRA, 2015, 426 : 1 - 31
  • [3] Classifying complements for Hopf algebras and Lie algebras
    Agore, A. L.
    Militaru, G.
    [J]. JOURNAL OF ALGEBRA, 2013, 391 : 193 - 208
  • [4] Agore A. L., 2019, MONOGRAPHS RES NOTES
  • [5] Bernstein S, 1923, CR HEBD ACAD SCI, V177, P581
  • [6] Bernstein S, 1923, CR HEBD ACAD SCI, V177, P528
  • [7] Bernstein S. N., 1922, SCI UKRAINE, V1, P14
  • [8] LOW-DIMENSIONAL BERNSTEIN-JORDAN ALGEBRAS
    CORTES, T
    MONTANER, F
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1995, 51 : 53 - 61
  • [9] CORTES T, 1991, COMMUN ALGEBRA, V19, P1429
  • [10] On algebras satisfying x2x2=N(x)x
    Elduque, A
    Okubo, S
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2000, 235 (02) : 275 - 314