Fixed Point and Convergence Results for Contractive-Type Self-Mappings of Metric Spaces with Graphs

被引:0
作者
Zaslavski, Alexander J. [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 01期
关键词
complete metric space; contractive mapping; fixed point; graph; G-NONEXPANSIVE MAPPINGS; THEOREMS;
D O I
10.3390/sym16010119
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
It is known that a strict contraction on a complete metric space with a graph possesses a fixed point. In the present paper, we show that this property holds for single valued and set-valued self-mappings of metric spaces with graphs that are of the contractive type. We also show the convergence of iterates of these mappings to fixed points. In particular, our results are true for metric spaces with symmetric graphs.
引用
收藏
页数:15
相关论文
共 25 条
  • [1] Some fixed point results on a metric space with a graph
    Aleomraninejad, S. M. A.
    Rezapour, Sh.
    Shahzad, N.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (03) : 659 - 663
  • [2] [Anonymous], 2014, Genericity in Nonlinear Analysis Developments in Mathematics
  • [3] On the rate of convergence of iterated Bregman projections and of the alternating algorithm
    Bargetz, Christian
    Medjic, Emir
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 481 (01)
  • [4] Bojor F, 2010, ANN UNIV CRAIOVA-MAT, V37, P85
  • [5] Fixed point theorems for Reich type contractions on metric spaces with a graph
    Bojor, Florin
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (09) : 3895 - 3901
  • [6] SOLVING THE SPLIT EQUALITY HIERARCHICAL FIXED POINT PROBLEM
    Djafari-Rouhani, B.
    Kazmi, K. R.
    Moradi, S.
    Ali, Rehan
    Khan, S. A.
    [J]. FIXED POINT THEORY, 2022, 23 (01): : 351 - 354
  • [7] Some Generalizations of Fixed Point Theorems of Caristi Type and Mizoguchi-Takahashi Type Under Relaxed Conditions
    Du, Wei-Shih
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2019, 50 (03): : 603 - 624
  • [8] Goebel K., 1984, UNIFORM CONVEXITY HY
  • [9] IFS on a metric space with a graph structure and extensions of the Kelisky-Rivlin theorem
    Gwozdz-Lukawska, Gertruda
    Jachymski, Jacek
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 356 (02) : 453 - 463
  • [10] Jachymski J, 2008, P AM MATH SOC, V136, P1359