TiO2 core-shell and core-dual-shell nanoparticles with tunable heterojunctions and visible to near-infrared extinctions

被引:5
作者
Medhi, Riddhiman [1 ]
Plengjaroensirichai, Sarawut [2 ,3 ]
Ngo, Nhat [2 ,3 ]
Marquez, Maria D. [2 ,3 ]
Srinoi, Pannaree [4 ]
Tran, Hung-Vu [5 ]
Jacobson, Allan J. [2 ,3 ]
Lee, Tai-Chou [6 ]
Lee, T. Randall [2 ,3 ]
机构
[1] Univ Scranton, Dept Chem, 800 Linden St, Scranton, PA 18510 USA
[2] Univ Houston, SERC 5004, Dept Chem, 4800 Calhoun Rd, Houston, TX 77204 USA
[3] Univ Houston, Texas Ctr Superconduct, 4800 Calhoun Rd, Houston, TX 77204 USA
[4] Kasetsart Univ, Fac Sci, Dept Chem, Bangkok 10900, Thailand
[5] Nguyen Tat Thanh Univ, NTT Hitech Inst, 298-300A Nguyen Tat Thanh St,Dist 4, Ho Chi Minh City, Vietnam
[6] Natl Cent Univ, Dept Chem & Mat Engn, 300 Jhongda Rd, Jhongli 32001, Taiwan
来源
MATERIALS ADVANCES | 2024年 / 5卷 / 04期
关键词
SURFACE-PLASMON RESONANCE; GOLD-SILVER NANOSHELLS; PHOTOCATALYTIC PROPERTIES; FACILE SYNTHESIS; WATER OXIDATION; METAL-OXIDES; NANOSTRUCTURES; LIGHT; NANORODS; FILMS;
D O I
10.1039/d3ma00756a
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The popular use of titanium dioxide (TiO2) among metal oxides in a variety of optoelectronic applications can be attributed to its low cost and strong extinction in the UV region. However, TiO2 suffers from an inability to utilize a major part of the solar spectrum, and from rapid electron-hole recombination of photo-generated charge carriers. These challenges can be resolved by incorporating gold-silver nanoshells (GS-NS) with localized surface plasmon resonances (LSPR) into TiO2 nanostructures, with the overall goal of understanding near-field LSPR activation as well as electron-transfer and charge-trapping characteristics in core-shell and core-dual-shell systems. A method for the synthesis of core-shell nanoparticles consisting of a hollow gold-silver nanoshell core with a TiO2 shell (GS-NS@TiO2) is presented. Synthesis of core-dual-shell nanoparticles with either a semiconducting or insulating interlayer between the GS-NS core and TiO2 shell (GS-NS@SnO2@TiO2 and GS-NS@SiO2@TiO2) is also presented. In addition to a strong tunable surface plasmon resonance in the visible to near-IR region that allows better utilization of the solar spectrum by the TiO2 shell, incorporation of a GS-NS core leads to significant suppression of electron-hole recombination processes in TiO2, further demonstrating the advantages of the plasmonic core and metal oxide shell architecture. The near-field LSPR properties and charge transfer characteristics were further modified by the incorporation of SnO2 or SiO2 interlayers, with the SnO2 interlayer providing the most effective suppression of charge recombination. Reliable methods to fabricate composite TiO2-based nanoparticles with finely tunable optical and electrical properties are reported.
引用
收藏
页码:1648 / 1666
页数:19
相关论文
共 87 条
[41]   Dynamics of Electron Injection in Sno2/Tio2 Core/Shell Electrodes for Water-Splitting Dye-Sensitized Photoelectrochemical Cells [J].
McCool, Nicholas S. ;
Swierk, John R. ;
Nemes, Coleen T. ;
Schmuttenmaer, Charles A. ;
Mallouk, Thomas E. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (15) :2930-2934
[42]  
Medhi R., 2021, CURR RES MAT SCI, V3
[43]   Nanoparticle-Based Strategies to Combat COVID-19 [J].
Medhi, Riddhiman ;
Srinoi, Pannaree ;
Nhat Ngo ;
Hung-Vu Tran ;
Lee, T. Randall .
ACS APPLIED NANO MATERIALS, 2020, 3 (09) :8557-8580
[44]   Antimony- and Zinc-Doped Tin Oxide Shells Coated on Gold Nanoparticles and Gold-Silver Nanoshells Having Tunable Extinctions for Sensing and Photonic Applications [J].
Medhi, Riddhiman ;
Li, Chien-Hung ;
Lee, Sang Ho ;
Srinoi, Pannaree ;
Marquez, Maria D. ;
Robles-Hernandez, Francisco ;
Jacobson, Allan J. ;
Lee, Tai-Chou ;
Lee, T. Randall .
ACS APPLIED NANO MATERIALS, 2020, 3 (09) :8958-8971
[45]   Visible-Light-Active Doped Metal Oxide Nanoparticles: Review of their Synthesis, Properties, and Applications [J].
Medhi, Riddhiman ;
Marquez, Maria D. ;
Lee, T. Randall .
ACS APPLIED NANO MATERIALS, 2020, 3 (07) :6156-6185
[46]   Uniformly Spherical and Monodisperse Antimony- and Zinc-Doped Tin Oxide Nanoparticles for Optical and Electronic Applications [J].
Medhi, Riddhiman ;
Li, Chien-Hung ;
Lee, Sang Ho ;
Marquez, Maria D. ;
Jacobson, Allan J. ;
Lee, Tai-Chou ;
Lee, T. Randall .
ACS APPLIED NANO MATERIALS, 2019, 2 (10) :6554-6564
[47]   From gold nanoparticles to luminescent nano-objects: experimental aspects for better gold-chromophore interactions [J].
Navarro, Julien R. G. ;
Lerouge, Frederic .
NANOPHOTONICS, 2017, 6 (01) :71-92
[48]   Doping for Speed: Colloidal Nanoparticles for Thin-Film Optoelectronics [J].
Noone, Kevin M. ;
Ginger, David S. .
ACS NANO, 2009, 3 (02) :261-265
[49]   Titania Photocatalysis beyond Recombination: A Critical Review [J].
Ohtani, Bunsho .
CATALYSTS, 2013, 3 (04) :942-953
[50]  
Oldfield G, 2000, ADV MATER, V12, P1519, DOI 10.1002/1521-4095(200010)12:20<1519::AID-ADMA1519>3.0.CO