For the nonlinear parameter-varying (NPV) model of unmanned surface vehicle with the consideration of the velocities on yaw and surge as well as wave disturbances, a robust H-infinity control method is proposed based on extended homogeneous polynomial Lyapunov function (EHPLF) to regulate heading for the superior performance on the rapidity, accuracy, and robustness. First, a NPV model of heading error is established to design a general form of a state feedback controller with a robust H-infinity performance. Second, a Lyapunov matrix with full states and varying parameter is constructed to derive the robust H-infinity global exponential stability conditions by Euler's homogeneity relation for the NPV system, known as the EHPLF stability conditions. Third, since the EHPLF stability conditions consist of a set of nonlinear coupled inequalities that cannot be directly solved by sum of squares (SOS) toolboxes, they are decoupled with matrix transformations to obtain the EHPLF-SOS stability conditions, which is solved for the parameters of the state feedback controller. Finally, the simulation results indicate that EHPLF method exhibits a superior performance on dynamic, steady-state, and robustness.