Optimal error estimates of a SAV-FEM for the Cahn-Hilliard-Navier-Stokes model

被引:9
作者
Yang, Jinting [1 ]
Yi, Nianyu [2 ]
Chen, Yaoyao [3 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
[3] Anhui Normal Univ, Sch Math & Stat, Wuhu 241000, Anhui, Peoples R China
关键词
Cahn-Hilliard-Navier-Stokes equations; Scalar auxiliary variable; Euler semi-implicit scheme; Finite element method; Error estimates; partial differential t; FINITE-ELEMENT APPROXIMATIONS; DIFFUSE-INTERFACE MODEL; PHASE-FIELD MODEL; NONUNIFORM SYSTEM; 2-PHASE FLOWS; FREE-ENERGY; MAC SCHEME; TIME; CONVERGENCE; 2ND-ORDER;
D O I
10.1016/j.cam.2023.115577
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We carry out the optimal error estimates of a scalar auxiliary variable (SAV) based the Euler semi-implicit finite element method for the Cahn-Hilliard-Navier-Stokes (CHNS) system in this paper. A SAV is introduced to reformulate the CHNS system into an equivalent system. We apply the Euler semi-implicit method and finite element method for the temporal and spatial discretizations to obtain a linear and unconditional energy stable scheme. The stability of numerical solutions under different norms and the optimal error estimates for our proposed numerical schemes are also presented. Finally, numerical examples are presented to demonstrate the accuracy of the proposed method, and the discrete energy is dissipated in numerical simulations. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:28
相关论文
共 38 条
[1]   NONLINEAR GALERKIN METHODS AND MIXED FINITE-ELEMENTS - 2-GRID ALGORITHMS FOR THE NAVIER-STOKES EQUATIONS [J].
AMMI, AAO ;
MARION, M .
NUMERISCHE MATHEMATIK, 1994, 68 (02) :189-213
[2]  
[Anonymous], 2006, Springer Series in Computational Mathematics
[3]  
[Anonymous], 1975, Sobolev Spaces
[4]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[5]   FREE ENERGY OF A NONUNIFORM SYSTEM .3. NUCLEATION IN A 2-COMPONENT INCOMPRESSIBLE FLUID [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1959, 31 (03) :688-699
[6]   ERROR ESTIMATES FOR A FULLY DISCRETIZED SCHEME TO A CAHN-HILLIARD PHASE-FIELD MODEL FOR TWO-PHASE INCOMPRESSIBLE FLOWS [J].
Cai, Yongyong ;
Shen, Jie .
MATHEMATICS OF COMPUTATION, 2018, 87 (313) :2057-2090
[7]   Error estimates for time discretizations of Cahn-Hilliard and Allen-Cahn phase-field models for two-phase incompressible flows [J].
Cai, Yongyong ;
Choi, Heejun ;
Shen, Jie .
NUMERISCHE MATHEMATIK, 2017, 137 (02) :417-449
[8]   Optimal error estimates for the scalar auxiliary variable finite-element schemes for gradient flows [J].
Chen, Hongtao ;
Mao, Jingjing ;
Shen, Jie .
NUMERISCHE MATHEMATIK, 2020, 145 (01) :167-196
[9]   Analysis of the grad-div stabilization for the time-dependent Navier-Stokes equations with inf-sup stable finite elements [J].
de Frutos, Javier ;
Garcia-Archilla, Bosco ;
John, Volker ;
Novo, Julia .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2018, 44 (01) :195-225
[10]   Convergence analysis and error estimates for a second order accurate finite element method for the Cahn-Hilliard-Navier-Stokes system [J].
Diegel, Amanda E. ;
Wang, Cheng ;
Wang, Xiaoming ;
Wise, Steven M. .
NUMERISCHE MATHEMATIK, 2017, 137 (03) :495-534