On double phase Kirchhoff problems with singular nonlinearity

被引:38
作者
Arora, Rakesh [2 ]
Fiscella, Alessio [3 ]
Mukherjee, Tuhina [4 ]
Winkert, Patrick [1 ]
机构
[1] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
[2] Indian Inst Technol Varanasi IIT BHU, Dept Math Sci, Varanasi 221005, Uttar Pradesh, India
[3] Univ Milano Bicocca, Dipartimento Matemat & Applicazioni, Via Cozzi 55, I-20125 Milan, Italy
[4] Indian Inst Technol Jodhpur, Dept Math, Jodhpur 342037, Rajasthan, India
基金
巴西圣保罗研究基金会;
关键词
double phase operator; fibering method; Kirchhoff term; multiple solutions; Nehari manifold; singular problems; EXISTENCE; REGULARITY; MINIMIZERS; EQUATIONS; CALCULUS; GROWTH;
D O I
10.1515/anona-2022-0312
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study multiplicity results for double phase problems of Kirchhoff type with right-hand sides that include a parametric singular term and a nonlinear term of subcritical growth. Under very general assumptions on the data, we prove the existence of at least two weak solutions that have different energy sign. Our treatment is based on the fibering method in form of the Nehari manifold. We point out that we cover both the nondegenerate as well as the degenerate Kirchhoff case in our setting.
引用
收藏
页数:24
相关论文
共 39 条
[1]  
[Anonymous], 1960, Osaka Math. J.
[2]  
[Anonymous], 1977, Nonlinearity and Functional Analysis
[3]  
[Anonymous], 2011, J Math Sci, DOI DOI 10.1007/S10958-011-0260-7
[4]   Existence and regularity results for a class of parabolic problems with double phase flux of variable growth [J].
Arora, Rakesh ;
Shmarev, Sergey .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (01)
[5]   Double-phase parabolic equations with variable growth and nonlinear sources [J].
Arora, Rakesh ;
Shmarev, Sergey .
ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01) :304-335
[6]   On critical double phase Kirchhoff problems with singular nonlinearity [J].
Arora, Rakesh ;
Fiscella, Alessio ;
Mukherjee, Tuhina ;
Winkert, Patrick .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (03) :1079-1106
[7]   Regularity for general functionals with double phase [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
[8]   Harnack inequalities for double phase functionals [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 :206-222
[9]   Eigenvalues for double phase variational integrals [J].
Colasuonno, Francesca ;
Squassina, Marco .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (06) :1917-1959
[10]   Bounded Minimisers of Double Phase Variational Integrals [J].
Colombo, Maria ;
Mingione, Giuseppe .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 218 (01) :219-273