Gamma-Nabla Hardy-Hilbert-Type Inequalities on Time Scales

被引:2
作者
Almarri, Barakah [1 ]
El-Deeb, Ahmed A. [2 ]
机构
[1] Princess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi Arabia
[2] Al Azhar Univ, Fac Sci, Dept Math, Nasr City 11884, Cairo, Egypt
关键词
Hardy-Hilbert's inequality; dynamic inequality; time scales; conformable fractional nabla calculus; INTEGRAL-INEQUALITIES;
D O I
10.3390/axioms12050449
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigated several novel conformable fractional gamma-nabla dynamic Hardy-Hilbert inequalities on time scales in this study. Several continuous inequalities and their corresponding discrete analogues in the literature are combined and expanded by these inequalities. Holder's inequality on time scales and a few algebraic inequalities are used to demonstrate our findings.
引用
收藏
页数:13
相关论文
共 27 条
[1]  
Agarwal R.P., 1993, UNIQUENESS NONUNIQUE
[2]  
Agarwal R. P., 2014, Dynamic Inequalities on Time Scales
[3]  
Bohner M, 2007, Communications in Mathematical Analysis, V3, P1
[4]  
Bohner M., 2008, JIPAM J INEQUAL PURE, V9
[5]  
Bohner M., 2005, J INEQUAL PURE APPL, V6
[6]  
Cloud Michael J., 1998, Inequalities
[7]   Hermite-Hadamard inequality on time scales [J].
Dinu, Cristian .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2008, 2008 (1)
[8]  
Handley G.D., 2000, TAMKANG J MATH, V31, P311, DOI [10.5556/j.tkjm.31.2000.389, DOI 10.5556/J.TKJM.31.2000.389]
[9]  
Hardy G.H., 1952, Inequalities
[10]  
Hilger S., 1988, THESIS U WURZBURG WU