On Numerical Dimensions of Calabi-Yau Varieties

被引:0
|
作者
Jiang, Chen [1 ]
Wang, Long [2 ]
机构
[1] Fudan Univ, Shanghai Ctr Math Sci, Jiangwan Campus, Shanghai 200438, Peoples R China
[2] Univ Tokyo, Grad Sch Math Sci, 3-8-1 Komaba, Meguro ku, Tokyo 1538914, Japan
关键词
BIRATIONAL AUTOMORPHISM; MINIMAL MODELS; MANIFOLDS; CONE;
D O I
10.1093/imrn/rnad032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a Calabi-Yau variety of Picard number two with infinite birational automorphism group. We show that the numerical dimension kappa(sigma)(R) of the extremal rays of the closed movable cone of X is dim X/2. More generally, we investigate the relation between the two numerical dimensions kappa(sigma)(R) and kappa(R)(vol) for Calabi-Yau varieties. We also compute kappa(sigma)(R) for non-big divisors in the closed movable cone of a projective hyperahler manifold.
引用
收藏
页码:1472 / 1495
页数:24
相关论文
共 50 条
  • [41] Special Lagrangian Cycles and Calabi-Yau Transitions
    Collins, Tristan C.
    Gukov, Sergei
    Picard, Sebastien
    Yau, Shing-Tung
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 401 (01) : 769 - 802
  • [42] Calabi-Yau Fourfolds in Products of Projective Space
    Gray, James
    Haupt, Alexander
    Lukas, Andre
    STRING-MATH 2013, 2014, 88 : 281 - 290
  • [43] DIAMETER BOUNDS FOR DEGENERATING CALABI-YAU METRICS
    Li, Yang
    Tosatti, Valentino
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2024, 127 (02) : 603 - 614
  • [44] Instanton superpotentials, Calabi-Yau geometry, and fibrations
    Anderson, Lara B.
    Apruzzi, Fabio
    Gao, Xin
    Gray, James
    Lee, Seung-Joo
    PHYSICAL REVIEW D, 2016, 93 (08)
  • [45] String modular phases in Calabi-Yau families
    Kadir, Shabnam
    Lynker, Monika
    Schimmrigk, Rolf
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (12) : 2453 - 2469
  • [46] ON K-STABILITY OF CALABI-YAU FIBRATIONS
    Hattori, Masafumi
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2025, : 961 - 1019
  • [47] Calabi-Yau Threefolds with Small Hodge Numbers
    Candelas, Philip
    Constantin, Andrei
    Mishra, Challenger
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2018, 66 (06):
  • [48] McKay Correspondence and New Calabi-Yau Threefolds
    Yu, Xun
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (21) : 6444 - 6468
  • [49] A strange family of Calabi-Yau 3-folds
    Nuer, Howard J.
    Devlin, Patrick
    STRING-MATH 2014, 2016, 93 : 245 - 262
  • [50] The Basso-Dixon formula and Calabi-Yau geometry
    Duhr, Claude
    Klemm, Albrecht
    Loebbert, Florian
    Nega, Christoph
    Porkert, Franziska
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (03)