On Numerical Dimensions of Calabi-Yau Varieties

被引:0
|
作者
Jiang, Chen [1 ]
Wang, Long [2 ]
机构
[1] Fudan Univ, Shanghai Ctr Math Sci, Jiangwan Campus, Shanghai 200438, Peoples R China
[2] Univ Tokyo, Grad Sch Math Sci, 3-8-1 Komaba, Meguro ku, Tokyo 1538914, Japan
关键词
BIRATIONAL AUTOMORPHISM; MINIMAL MODELS; MANIFOLDS; CONE;
D O I
10.1093/imrn/rnad032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a Calabi-Yau variety of Picard number two with infinite birational automorphism group. We show that the numerical dimension kappa(sigma)(R) of the extremal rays of the closed movable cone of X is dim X/2. More generally, we investigate the relation between the two numerical dimensions kappa(sigma)(R) and kappa(R)(vol) for Calabi-Yau varieties. We also compute kappa(sigma)(R) for non-big divisors in the closed movable cone of a projective hyperahler manifold.
引用
收藏
页码:1472 / 1495
页数:24
相关论文
共 50 条
  • [1] MIRROR SYMMETRY FOR DOUBLE COVER CALABI-YAU VARIETIES
    Hosono, Shinobu
    Lee, Tsung-Ju
    Lian, Bong H.
    Yau, Shing-Tung
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2024, 127 (01) : 409 - 431
  • [2] Algebraic approximation and the decomposition theorem for Kahler Calabi-Yau varieties
    Bakker, Benjamin
    Guenancia, Henri
    Lehn, Christian
    INVENTIONES MATHEMATICAE, 2022, 228 (03) : 1255 - 1308
  • [3] Remarks on projective normality for certain Calabi-Yau and hyperkahler varieties
    Mukherjee, Jayan
    Raychaudhury, Debaditya
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (10)
  • [4] The Calabi-Yau theorem and Kahler currents
    Tosatti, Valentino
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2016, 20 (02) : 381 - 404
  • [5] Nef Line Bundles on Calabi-Yau Threefolds, I
    Lazic, Vladimir
    Oguiso, Keiji
    Peternell, Thomas
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (19) : 6070 - 6119
  • [6] Octonionic Calabi-Yau Theorem
    Alesker, Semyon
    Gordon, Peter V.
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (09)
  • [7] ON COLLAPSING CALABI-YAU FIBRATIONS
    Li, Yang
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2021, 117 (03) : 451 - 483
  • [8] Determinantal Calabi-Yau varieties in Grassmannians and the Givental I-functions
    Honma, Yoshinori
    Manabe, Masahide
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (12):
  • [9] Numerical spectra of the Laplacian for line bundles on Calabi-Yau hypersurfaces
    Ashmore, A.
    He, Y-H.
    Heyes, E.
    Ovrut, B. A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (07)
  • [10] On the Numerical Dimension of Calabi-Yau 3-Folds of Picard Number 2
    Hoff, Michael
    Stenger, Isabel
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (12) : 10736 - 10758