A Review of Physics-Informed Machine Learning in Fluid Mechanics

被引:72
作者
Sharma, Pushan [1 ]
Chung, Wai Tong [1 ]
Akoush, Bassem [1 ]
Ihme, Matthias [1 ,2 ]
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, Dept Photon Sci, Menlo Pk, CA 94025 USA
关键词
physics-informed machine learning; PDE-preserved learning; deep neural network; fluid mechanics; Navier-Stokes; NEURAL-NETWORKS; DATA-DRIVEN; TURBULENT; FLOWS; DECOMPOSITION; SIMULATIONS;
D O I
10.3390/en16052343
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Physics-informed machine-learning (PIML) enables the integration of domain knowledge with machine learning (ML) algorithms, which results in higher data efficiency and more stable predictions. This provides opportunities for augmenting-and even replacing-high-fidelity numerical simulations of complex turbulent flows, which are often expensive due to the requirement of high temporal and spatial resolution. In this review, we (i) provide an introduction and historical perspective of ML methods, in particular neural networks (NN), (ii) examine existing PIML applications to fluid mechanics problems, especially in complex high Reynolds number flows, (iii) demonstrate the utility of PIML techniques through a case study, and (iv) discuss the challenges and opportunities of developing PIML for fluid mechanics.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Physics-informed machine learning
    Karniadakis, George Em
    Kevrekidis, Ioannis G.
    Lu, Lu
    Perdikaris, Paris
    Wang, Sifan
    Yang, Liu
    NATURE REVIEWS PHYSICS, 2021, 3 (06) : 422 - 440
  • [2] A review of physics-informed machine learning for building energy modeling
    Ma, Zhihao
    Jiang, Gang
    Hu, Yuqing
    Chen, Jianli
    APPLIED ENERGY, 2025, 381
  • [3] Physics-informed deep-learning applications to experimental fluid mechanics
    Eivazi, Hamidreza
    Wang, Yuning
    Vinuesa, Ricardo
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (07)
  • [4] Physics-Informed Machine Learning and Uncertainty Quantification for Mechanics of Heterogeneous Materials
    Bharadwaja, B. V. S. S.
    Nabian, Mohammad Amin
    Sharma, Bharatkumar
    Choudhry, Sanjay
    Alankar, Alankar
    INTEGRATING MATERIALS AND MANUFACTURING INNOVATION, 2022, 11 (04) : 607 - 627
  • [5] Physics-Informed Machine Learning and Uncertainty Quantification for Mechanics of Heterogeneous Materials
    B. V. S. S. Bharadwaja
    Mohammad Amin Nabian
    Bharatkumar Sharma
    Sanjay Choudhry
    Alankar Alankar
    Integrating Materials and Manufacturing Innovation, 2022, 11 : 607 - 627
  • [6] A critical review of physics-informed machine learning applications in subsurface energy systems
    Latrach, Abdeldjalil
    Malki, Mohamed L.
    Morales, Misael
    Mehana, Mohamed
    Rabiei, Minou
    GEOENERGY SCIENCE AND ENGINEERING, 2024, 239
  • [7] Intelligent modeling with physics-informed machine learning for petroleum engineering problems
    Xie, Chiyu
    Du, Shuyi
    Wang, Jiulong
    Lao, Junming
    Song, Hongqing
    ADVANCES IN GEO-ENERGY RESEARCH, 2023, 8 (02): : 71 - 75
  • [8] Physics-informed machine learning: case studies for weather and climate modelling
    Kashinath, K.
    Mustafa, M.
    Albert, A.
    Wu, J-L.
    Jiang, C.
    Esmaeilzadeh, S.
    Azizzadenesheli, K.
    Wang, R.
    Chattopadhyay, A.
    Singh, A.
    Manepalli, A.
    Chirila, D.
    Yu, R.
    Walters, R.
    White, B.
    Xiao, H.
    Tchelepi, H. A.
    Marcus, P.
    Anandkumar, A.
    Hassanzadeh, P.
    Prabhat
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2194):
  • [9] A Taxonomic Survey of Physics-Informed Machine Learning
    Pateras, Joseph
    Rana, Pratip
    Ghosh, Preetam
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [10] Review of physics-informed machine-learning inversion of geophysical data
    Schuster, Gerard T.
    Chen, Yuqing
    Feng, Shihang
    GEOPHYSICS, 2024, 89 (06) : T337 - T356